Identification and control:: Joint input design and H∞ state feedback with ellipsoidal parametric uncertainty via LMIs

被引:26
作者
Barenthin, Maerta [1 ]
Hjalmarsson, Hakan [1 ]
机构
[1] KTH, Sch Elect Engn, S-10044 Stockholm, Sweden
关键词
identification for robust control; H-infinity identification; least-squares identification; robust identification; confidence ellipsoids; robustness to uncertainties; parameter uncertainty; uncertain linear systems; LMI optimization;
D O I
10.1016/j.automatica.2007.06.025
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
One obstacle in connecting robust control with models generated from prediction error identification is that very few control design methods are able to directly cope with the ellipsoidal parametric uncertainty regions that are generated by such identification methods. In this contribution we present a joint robust state feedback control/input design procedure which guarantees stability and prescribed closed-loop performance using models identified from experimental data. This means that given H-infinity specifications on the closed-loop transfer function are translated into sufficient requirements on the input signal spectrum used to identify the process. The condition takes the form of a linear matrix inequality. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:543 / 551
页数:9
相关论文
共 26 条
[1]   On the choice of inputs in identification for robust control [J].
Antoulas, AC ;
Anderson, BDO .
AUTOMATICA, 1999, 35 (06) :1009-1031
[2]  
BARENTHIN M, 2005, P 16 IFAC WORLD C PR
[3]  
BARENTHIN M, 2006, TRITA EE, P23
[4]  
BARENTHIN M, 2005, P 44 IEEE C DEC CONT
[5]   Least costly identification experiment for control [J].
Bombois, X. ;
Scorletti, G. ;
Gevers, M. ;
Van den Hof, P. M. J. ;
Hildebrand, R. .
AUTOMATICA, 2006, 42 (10) :1651-1662
[6]  
BOMBOIS X, 2002, IFAC WORLD C BARC SP
[7]  
Boy S., 1994, Linear MatrixInequalities in System and Control Theory
[8]   Robust control under parametric uncertainty via primal-dual convex analysis [J].
Ghulchak, A ;
Rantzer, A .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2002, 47 (04) :632-636
[9]  
Goodwin GC., 1977, DYNAMIC SYSTEM IDENT
[10]   IDENTIFICATION FOR CONTROL: OPTIMAL INPUT DESIGN WITH RESPECT TO A WORST-CASE ν-GAP COST FUNCTION [J].
Hildebrand, Roland ;
Gevers, Michel .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 41 (05) :1586-1608