Rolling Bearing Fault Diagnosis Based on Refined Composite Multi-Scale Approximate Entropy and Optimized Probabilistic Neural Network

被引:27
|
作者
Ma, Jianpeng [1 ]
Li, Zhenghui [2 ]
Li, Chengwei [1 ]
Zhan, Liwei [2 ]
Zhang, Guang-Zhu [3 ]
机构
[1] Harbin Inst Technol, Sch Instrumentat Sci & Engn, Harbin 150001, Peoples R China
[2] Aero Engine Corp China Harbin Bearing Co LTD, Harbin 150500, Peoples R China
[3] Catholic Univ Korea, Undergrad Coll, Songsin Global Campus, Bucheon Si 14662, Gyeonggi Do, Peoples R China
关键词
refined composite multi-scale approximate entropy; coyote optimized algorithm; probabilistic neural network; rolling bearing; fault diagnosis;
D O I
10.3390/e23020259
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A rolling bearing early fault diagnosis method is proposed in this paper, which is derived from a refined composite multi-scale approximate entropy (RCMAE) and improved coyote optimization algorithm based probabilistic neural network (ICOA-PNN) algorithm. Rolling bearing early fault diagnosis is a time-sensitive task, which is significant to ensure the reliability and safety of mechanical fault system. At the same time, the early fault features are masked by strong background noise, which also brings difficulties to fault diagnosis. So, we firstly utilize the composite ensemble intrinsic time-scale decomposition with adaptive noise method (CEITDAN) to decompose the signal at different scales, and then the refined composite multi-scale approximate entropy of the first signal component is calculated to analyze the complexity of describing the vibration signal. Afterwards, in order to obtain higher recognition accuracy, the improved coyote optimization algorithm based probabilistic neural network classifiers is employed for pattern recognition. Finally, the feasibility and effectiveness of this method are verified by rolling bearing early fault diagnosis experiment.
引用
收藏
页码:1 / 28
页数:27
相关论文
共 50 条
  • [41] MRNet: rolling bearing fault diagnosis in noisy environment based on multi-scale residual convolutional network
    Deng, Linfeng
    Zhao, Cheng
    Wang, Xiaoqiang
    Wang, Guojun
    Qiu, Ruiyu
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (12)
  • [42] Fault diagnosis of rolling bearings based on multi-scale deep subdomain adaptation network
    Zhou, Qin
    Su, Zuqiang
    Liu, Lanhui
    Hu, Xiaolin
    Yu, Jianhang
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 43 (01) : 575 - 585
  • [43] Improved multi-scale entropy and it's application in rolling bearing fault feature extraction
    Zhao, Dongfang
    Liu, Shulin
    Gu, Dan
    Sun, Xin
    Wang, Lu
    Wei, Yuan
    Zhang, Hongli
    MEASUREMENT, 2020, 152
  • [44] Bearing fault diagnosis based on multi-scale mean permutation entropy and parametric optimization SVM
    Wang G.
    Zhang M.
    Hu Z.
    Xiang L.
    Zhao B.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2022, 41 (01): : 221 - 228
  • [45] Fault diagnosis of rolling bearing based on back propagation neural network optimized by cuckoo search algorithm
    Xiao, Maohua
    Liao, Yabing
    Bartos, Petr
    Filip, Martin
    Geng, Guosheng
    Jiang, Ziwei
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (02) : 1567 - 1587
  • [46] Two-dimensional composite multi-scale time-frequency reverse dispersion entropy-based fault diagnosis for rolling bearing
    Li, Jiaqi
    Zheng, Jinde
    Pan, Haiyang
    Tong, Jinyu
    Feng, Ke
    Ni, Qing
    NONLINEAR DYNAMICS, 2023, 111 (08) : 7525 - 7546
  • [47] Fault diagnosis of rolling bearing based on back propagation neural network optimized by cuckoo search algorithm
    Maohua Xiao
    Yabing Liao
    Petr Bartos
    Martin Filip
    Guosheng Geng
    Ziwei Jiang
    Multimedia Tools and Applications, 2022, 81 : 1567 - 1587
  • [48] An intelligent diagnosis method of rolling bearing based on multi-scale residual shrinkage convolutional neural network
    Zhao, Xiaoqiang
    Zhang, Yazhou
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (08)
  • [49] Multi-Scale Permutation Entropy Based on Improved LMD and HMM for Rolling Bearing Diagnosis
    Gao, Yangde
    Villecco, Francesco
    Li, Ming
    Song, Wanqing
    ENTROPY, 2017, 19 (04):
  • [50] Time-Shift Multi-scale Weighted Permutation Entropy and GWO-SVM Based Fault Diagnosis Approach for Rolling Bearing
    Dong, Zhilin
    Zheng, Jinde
    Huang, Siqi
    Pan, Haiyang
    Liu, Qingyun
    ENTROPY, 2019, 21 (06)