Rolling Bearing Fault Diagnosis Based on Refined Composite Multi-Scale Approximate Entropy and Optimized Probabilistic Neural Network

被引:27
|
作者
Ma, Jianpeng [1 ]
Li, Zhenghui [2 ]
Li, Chengwei [1 ]
Zhan, Liwei [2 ]
Zhang, Guang-Zhu [3 ]
机构
[1] Harbin Inst Technol, Sch Instrumentat Sci & Engn, Harbin 150001, Peoples R China
[2] Aero Engine Corp China Harbin Bearing Co LTD, Harbin 150500, Peoples R China
[3] Catholic Univ Korea, Undergrad Coll, Songsin Global Campus, Bucheon Si 14662, Gyeonggi Do, Peoples R China
关键词
refined composite multi-scale approximate entropy; coyote optimized algorithm; probabilistic neural network; rolling bearing; fault diagnosis;
D O I
10.3390/e23020259
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A rolling bearing early fault diagnosis method is proposed in this paper, which is derived from a refined composite multi-scale approximate entropy (RCMAE) and improved coyote optimization algorithm based probabilistic neural network (ICOA-PNN) algorithm. Rolling bearing early fault diagnosis is a time-sensitive task, which is significant to ensure the reliability and safety of mechanical fault system. At the same time, the early fault features are masked by strong background noise, which also brings difficulties to fault diagnosis. So, we firstly utilize the composite ensemble intrinsic time-scale decomposition with adaptive noise method (CEITDAN) to decompose the signal at different scales, and then the refined composite multi-scale approximate entropy of the first signal component is calculated to analyze the complexity of describing the vibration signal. Afterwards, in order to obtain higher recognition accuracy, the improved coyote optimization algorithm based probabilistic neural network classifiers is employed for pattern recognition. Finally, the feasibility and effectiveness of this method are verified by rolling bearing early fault diagnosis experiment.
引用
收藏
页码:1 / 28
页数:27
相关论文
共 50 条
  • [21] Rolling bearing fault diagnosis using generalized refined composite multiscale sample entropy and optimized support vector machine
    Wang, Zhenya
    Yao, Ligang
    Cai, Yongwu
    MEASUREMENT, 2020, 156
  • [22] Rolling Bearing Composite Fault Diagnosis Method Based on Convolutional Neural Network
    Chen, Song
    Guo, Dong-ting
    Chen, Li-ai
    Wang, Da-gui
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2024, 38 (03)
  • [23] Multi-scale attention mechanism residual neural network for fault diagnosis of rolling bearings
    Wang, Yan
    Liang, Jie
    Gu, Xiaoguang
    Ling, Dan
    Yu, Haowen
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2022, 236 (20) : 10615 - 10629
  • [24] Fault diagnosis of rolling bearing based on feature fusion of multi-scale deep convolutional network
    Wang N.
    Ma P.
    Zhang H.
    Wang C.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2022, 43 (04): : 351 - 358
  • [25] Rolling bearing fault study based on an improved multi-scale convolutional recurrent neural network
    Dong, Shaojiang
    Huang, Xiang
    Xia, Zongyou
    Zou, Song
    Zhendong yu Chongji/Journal of Vibration and Shock, 2024, 43 (20): : 94 - 105
  • [26] A Fault Feature Extraction Method for Rolling Bearings Based on Refined Composite Multi-Scale Amplitude-Aware Permutation Entropy
    Song, Youshuo
    Wang, Weiyu
    IEEE ACCESS, 2021, 9 : 71979 - 71993
  • [27] Rolling bearing fault diagnosis based on fine-grained multi-scale Kolmogorov entropy and WOA-MSVM
    Wang, Bing
    Li, Huimin
    Hu, Xiong
    Wang, Cancan
    Sun, Dejian
    HELIYON, 2024, 10 (06)
  • [28] Refined Composite Multivariate Multiscale Dispersion Entropy and Its Application to Fault Diagnosis of Rolling Bearing
    Li, Congzhi
    Zheng, Jinde
    Pan, Haiyang
    Tong, Jinyu
    Zhang, Yifang
    IEEE ACCESS, 2019, 7 : 47663 - 47673
  • [29] Rolling Bearing Fault Diagnosis Method Based on Generalized Refined Composite Multiscale Sample Entropy and Manifold Learning
    Wang Z.
    Yao L.
    Zhongguo Jixie Gongcheng/China Mechanical Engineering, 2020, 31 (20): : 2463 - 2471
  • [30] An improved deep convolutional neural network with multi-scale information for bearing fault diagnosis
    Huang, Wenyi
    Cheng, Junsheng
    Yang, Yu
    Guo, Gaoyuan
    NEUROCOMPUTING, 2019, 359 : 77 - 92