T-Stability Approach to Variational Iteration Method for Solving Integral Equations

被引:5
作者
Saadati, R. [2 ]
Vaezpour, S. M. [2 ]
Rhoades, B. E. [1 ]
机构
[1] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
[2] Amirkabir Univ Technol, Dept Math & Comp Sci, Tehran 15914, Iran
关键词
DIFFERENTIAL-EQUATIONS;
D O I
10.1155/2009/393245
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider T-stability definition according to Y. Qing and B. E. Rhoades (2008) and we show that the variational iteration method for solving integral equations is T-stable. Finally, we present some text examples to illustrate our result. Copyright (C) 2009 R. Saadati et al.
引用
收藏
页数:9
相关论文
共 12 条
[1]  
Biazar J, 2007, INT J NONLINEAR SCI, V8, P311
[2]  
Froberg C.-E., 1969, INTRO NUMERICAL ANAL, Vsecond
[3]  
He J. H., 2000, INT J NONLIN SCI NUM, V1, P51, DOI DOI 10.1515/IJNSNS.2000.1.1.51
[4]   Variational iteration method - a kind of non-linear analytical technique: Some examples [J].
He, JH .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1999, 34 (04) :699-708
[5]   Variational iteration method: New development and applications [J].
He, Ji-Huan ;
Wu, Xu-Hong .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 54 (7-8) :881-894
[6]   Variational iteration method - Some recent results and new interpretations [J].
He, Ji-Huan .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 207 (01) :3-17
[7]  
Odibat ZM, 2006, INT J NONLIN SCI NUM, V7, P27
[8]  
Ozer H, 2007, INT J NONLIN SCI NUM, V8, P513
[9]   T-stability of Picard iteration in metric spaces [J].
Qing, Yuan ;
Rhoades, B. E. .
FIXED POINT THEORY AND APPLICATIONS, 2008, 2008 (1)
[10]  
Saadati R., COMPUTERS M IN PRESS