Isomorphisms between spaces of Lipschitz functions

被引:10
作者
Candido, Leandro [1 ]
Cuth, Marek [2 ]
Doucha, Michal [3 ]
机构
[1] Univ Fed Sao Paulo UNIFESP, Inst Ciencia & Tecnol, Dept Matemat, Av Cesare Monsueto Giulio Lattes 1201, BR-12247014 Sao Jose Dos Campos, SP, Brazil
[2] Charles Univ Prague, Fac Math & Phys, Dept Math Anal, Sokolovska 49-83, Prague 18675 8, Czech Republic
[3] Czech Acad Sci, Inst Math, Zitna 25, Prague 11567 1, Czech Republic
基金
巴西圣保罗研究基金会;
关键词
Lipschitz functions; Carnot groups; Lipschitz-free spaces; Orlicz spaces; SEPARATED NETS; PROPERTY; METRICS; THEOREM; GROWTH;
D O I
10.1016/j.jfa.2019.02.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop tools for proving isomorphisms of normed spaces of Lipschitz functions over various doubling metric spaces and Banach spaces. In particular, we show that Lip(0)(Z(d)) similar or equal to_Lip(0)(R-d), for all d is an element of N. More generally, we e.g. show that Lip(0)(Gamma) similar or equal to Lip(0)(G), where Gamma is from a large class of finitely generated nilpotent groups and G is its Mal'cev closure; or that Lip(0)(l(p)) similar or equal to Lip(0)(L-p), for all 1 <= p <= infinity. We leave a large area for further possible research. (C) 2019 Published by Elsevier Inc.
引用
收藏
页码:2697 / 2727
页数:31
相关论文
共 53 条
[1]  
[Anonymous], 1991, MONOGRAPHS TXB PURE
[2]   A fixed point theorem for L 1 spaces [J].
Bader, U. ;
Gelander, T. ;
Monod, N. .
INVENTIONES MATHEMATICAE, 2012, 189 (01) :143-148
[3]   ON (V) SETS AND PELCZYNSKI PROPERTY (V) [J].
BOMBAL, F .
GLASGOW MATHEMATICAL JOURNAL, 1990, 32 :109-120
[4]   On the rate of convergence to the asymptotic cone for nilpotent groups and subFinsler geometry [J].
Breuillard, Emmanuel ;
Le Donne, Enrico .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (48) :19220-19226
[5]  
Brudnyi A, 2007, AM J MATH, V129, P217
[6]   Separated nets in Euclidean space and Jacobians of Bilipschitz maps [J].
Burago, D ;
Kleiner, B .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1998, 8 (02) :273-282
[7]  
CHEEGER J., 2006, Nankai Tracts in Mathematics, V11, P129
[8]   Differentiating maps into L1, and the geometry of BV functions [J].
Cheeger, Jeff ;
Kleiner, Bruce .
ANNALS OF MATHEMATICS, 2010, 171 (02) :1347-1385
[9]  
Christensen J. P. R., 1974, N HOLLAND MATH STUDI, V10
[10]   GRADINGS ON LIE ALGEBRAS, SYSTOLIC GROWTH, AND COHOPFIAN PROPERTIES OF NILPOTENT GROUPS [J].
Cornulier, Yves .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2016, 144 (04) :693-744