Advance Warning Methodologies for COVID-19 Using Chest X-Ray Images

被引:26
作者
Ahishali, Mete [1 ]
Degerli, Aysen [1 ]
Yamac, Mehmet [1 ]
Kiranyaz, Serkan [2 ]
Chowdhury, Muhammad E. H. [2 ]
Hameed, Khalid [3 ]
Hamid, Tahir [4 ,5 ]
Mazhar, Rashid [4 ]
Gabbouj, Moncef [1 ]
机构
[1] Tampere Univ, Fac Informat Technol & Commun Sci, Tampere 33720, Finland
[2] Qatar Univ, Dept Elect Engn, Doha 2713, Qatar
[3] Reem Med Ctr, Doha 46031, Qatar
[4] Hamad Med Corp Hosp, Doha 57621, Qatar
[5] Weill Cornell Med Qatar, Doha 24144, Qatar
基金
芬兰科学院;
关键词
COVID-19; X-ray imaging; Lung; Task analysis; Sensitivity; Computed tomography; Medical diagnostic imaging; COVID-19 detection in early stages; deep learning; machine learning; representation based classification; SUPPORT RECOVERY; CT; REPRESENTATION; CLASSIFICATION;
D O I
10.1109/ACCESS.2021.3064927
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Coronavirus disease 2019 (COVID-19) has rapidly become a global health concern after its first known detection in December 2019. As a result, accurate and reliable advance warning system for the early diagnosis of COVID-19 has now become a priority. The detection of COVID-19 in early stages is not a straightforward task from chest X-ray images according to expert medical doctors because the traces of the infection are visible only when the disease has progressed to a moderate or severe stage. In this study, our first aim is to evaluate the ability of recent state-of-the-art Machine Learning techniques for the early detection of COVID-19 from chest X-ray images. Both compact classifiers and deep learning approaches are considered in this study. Furthermore, we propose a recent compact classifier, Convolutional Support Estimator Network (CSEN) approach for this purpose since it is well-suited for a scarce-data classification task. Finally, this study introduces a new benchmark dataset called Early-QaTa-COV19, which consists of 1065 early-stage COVID-19 pneumonia samples (very limited or no infection signs) labeled by the medical doctors and 12544 samples for control (normal) class. A detailed set of experiments shows that the CSEN achieves the top (over 97%) sensitivity with over 95.5% specificity. Moreover, DenseNet-121 network produces the leading performance among other deep networks with 95% sensitivity and 99.74% specificity.
引用
收藏
页码:41052 / 41065
页数:14
相关论文
共 51 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]   Correlation of Chest CT and RT-PCR Testing for Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases [J].
Ai, Tao ;
Yang, Zhenlu ;
Hou, Hongyan ;
Zhan, Chenao ;
Chen, Chong ;
Lv, Wenzhi ;
Tao, Qian ;
Sun, Ziyong ;
Xia, Liming .
RADIOLOGY, 2020, 296 (02) :E32-E40
[3]  
[Anonymous], 2018, RSNA pneumonia detection challenge
[4]  
[Anonymous], 2020, LAB TESTING CORONAVI
[5]   Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks [J].
Apostolopoulos, Ioannis D. ;
Mpesiana, Tzani A. .
PHYSICAL AND ENGINEERING SCIENCES IN MEDICINE, 2020, 43 (02) :635-640
[6]   AMP-Inspired Deep Networks for Sparse Linear Inverse Problems [J].
Borgerding, Mark ;
Schniter, Philip ;
Rangan, Sundeep .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (16) :4293-4308
[7]   Current concepts - Computed tomography - An increasing source of radiation exposure [J].
Brenner, David J. ;
Hall, Eric J. .
NEW ENGLAND JOURNAL OF MEDICINE, 2007, 357 (22) :2277-2284
[8]   PadChest: A large chest x-ray image dataset with multi-label annotated reports [J].
Bustos, Aurelia ;
Pertusa, Antonio ;
Salinas, Jose-Maria ;
de la Iglesia-Vaya, Maria .
MEDICAL IMAGE ANALYSIS, 2020, 66
[9]  
Candes E., 2005, 11 MAGIE RECOVERY SP, V4, P14
[10]   A Probabilistic and RIPless Theory of Compressed Sensing [J].
Candes, Emmanuel J. ;
Plan, Yaniv .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (11) :7235-7254