Insights into the H2O2-driven catalytic mechanism of fungal lytic polysaccharide monooxygenases

被引:59
|
作者
Hedison, Tobias M. [1 ,2 ]
Breslmayr, Erik [1 ,3 ]
Shanmugam, Muralidharan [1 ,4 ]
Karnpakdee, Kwankao [3 ]
Heyes, Derren J. [1 ]
Green, Anthony P. [1 ,2 ]
Ludwig, Roland [3 ]
Scrutton, Nigel S. [1 ,2 ]
Kracher, Daniel [1 ,3 ]
机构
[1] Univ Manchester, Manchester Inst Biotechnol, Manchester, Lancs, England
[2] Univ Manchester, Manchester Inst Biotechnol, Future Biomfg Res Hub, Manchester M1 7DN, Lancs, England
[3] Univ Nat Resources & Life Sci, Dept Food Sci & Technol, Biocatalysis & Biosensing Lab, Vienna, Austria
[4] Univ Manchester, Photon Sci Inst, Manchester, Lancs, England
基金
英国生物技术与生命科学研究理事会; 奥地利科学基金会; 英国工程与自然科学研究理事会; 欧洲研究理事会; 欧盟地平线“2020”;
关键词
biomass degradation; cellobiose dehydrogenase; electron paramagnetic resonance; hydrogen peroxide; lytic polysaccharide monooxygenase; type II copper protein;
D O I
10.1111/febs.15704
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Fungal lytic polysaccharide monooxygenases (LPMOs) depolymerise crystalline cellulose and hemicellulose, supporting the utilisation of lignocellulosic biomass as a feedstock for biorefinery and biomanufacturing processes. Recent investigations have shown that H2O2 is the most efficient cosubstrate for LPMOs. Understanding the reaction mechanism of LPMOs with H2O2 is therefore of importance for their use in biotechnological settings. Here, we have employed a variety of spectroscopic and biochemical approaches to probe the reaction of the fungal LPMO9C from N. crassa using H2O2 as a cosubstrate and xyloglucan as a polysaccharide substrate. We show that a single 'priming' electron transfer reaction from the cellobiose dehydrogenase partner protein supports up to 20 H2O2-driven catalytic cycles of a fungal LPMO. Using rapid mixing stopped-flow spectroscopy, alongside electron paramagnetic resonance and UV-Vis spectroscopy, we reveal how H2O2 and xyloglucan interact with the enzyme and investigate transient species that form uncoupled pathways of NcLPMO9C. Our study shows how the H2O2 cosubstrate supports fungal LPMO catalysis and leaves the enzyme in the reduced Cu+ state following a single enzyme turnover, thus preventing the need for external protons and electrons from reducing agents or cellobiose dehydrogenase and supporting the binding of H2O2 for further catalytic steps. We observe that the presence of the substrate xyloglucan stabilises the Cu+ state of LPMOs, which may prevent the formation of uncoupled side reactions.
引用
收藏
页码:4115 / 4128
页数:14
相关论文
共 50 条
  • [21] Toward elucidating the mechanism of lytic polysaccharide monooxygenases: Chemical insights from X-ray and neutron crystallography
    Schroder, Gabriela C.
    Meilleur, Flora
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2021, 77 : C1097 - C1097
  • [22] Toward elucidating the mechanism of lytic polysaccharide monooxygenases: Chemical insights from X-ray and neutron crystallography
    Schroder, Gabriela
    Meilleur, Flora
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2021, 77 : A99 - A99
  • [23] H2O2-Driven Anticancer Activity of Mn Porphyrins and the Underlying Molecular Pathways
    Batinic-Haberle, Ines
    Tovmasyan, Artak
    Huang, Zhiqing
    Duan, Weina
    Du, Li
    Siamakpour-Reihani, Sharareh
    Cao, Zhipeng
    Sheng, Huaxin
    Spasojevic, Ivan
    Secord, Angeles Alvarez
    OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2021, 2021 (2021)
  • [24] Toward Elucidating the mechanism of lytic polysaccharide monooxygenases: Chemical insights from X-ray and neutron crystallography
    Schroder, Gabriela
    Meilleur, Flora
    PROTEIN SCIENCE, 2021, 30 : 174 - 174
  • [25] The liquid fraction from hydrothermal pretreatment of wheat straw provides lytic polysaccharide monooxygenases with both electrons and H2O2 co-substrate
    Riin Kont
    Ville Pihlajaniemi
    Anna S. Borisova
    Nina Aro
    Kaisa Marjamaa
    Judith Loogen
    Jochen Büchs
    Vincent G. H. Eijsink
    Kristiina Kruus
    Priit Väljamäe
    Biotechnology for Biofuels, 12
  • [26] The liquid fraction from hydrothermal pretreatment of wheat straw provides lytic polysaccharide monooxygenases with both electrons and H2O2 co-substrate
    Kont, Riin
    Pihlajaniemi, Ville
    Borisova, Anna S.
    Aro, Nina
    Marjamaa, Kaisa
    Loogen, Judith
    Buechs, Jochen
    Eijsink, Vincent G. H.
    Kruus, Kristiina
    Valjamae, Priit
    BIOTECHNOLOGY FOR BIOFUELS, 2019, 12 (01)
  • [27] H2O2-driven reduction of the Fe3+-quin2 chelate and the subsequent formation of oxidizing species
    Sandstrom, BE
    Svoboda, P
    Granstrom, M
    HarmsRingdahl, M
    Candeias, LP
    FREE RADICAL BIOLOGY AND MEDICINE, 1997, 23 (05) : 744 - 753
  • [28] Versatile H2O2-driven mixed aerogel synthesis from CdTe and bimetallic noble metal nanoparticles
    Wendt, R.
    Maerker, B.
    Dubavik, A.
    Herrmann, A. -K.
    Wollgarten, M.
    Rakovich, Y. P.
    Eychmueller, A.
    Rademann, K.
    Hendel, T.
    JOURNAL OF MATERIALS CHEMISTRY C, 2017, 5 (39) : 10251 - 10259
  • [29] Third-Hand Smoke Exacerbates H2O2-Driven Airway Responses in A549 Cells
    Reis, Rengin
    Kolci, Kubra
    Ozhan, Yagmur
    Coskun, Goknil Pelin
    Sipahi, Hande
    TURKISH JOURNAL OF PHARMACEUTICAL SCIENCES, 2024, 21 (05) : 376 - 389
  • [30] H2O2-Driven Aggregation Induced Emission-Based Nanomotors for the Monitoring and Treatment of Infected Surgical Wound
    Liang, Shuya
    Xing, Jiyao
    Zhang, Zongying
    Wang, Dan
    Xing, Dongming
    Geng, Zhongmin
    SMALL, 2025,