Insights into the H2O2-driven catalytic mechanism of fungal lytic polysaccharide monooxygenases

被引:59
|
作者
Hedison, Tobias M. [1 ,2 ]
Breslmayr, Erik [1 ,3 ]
Shanmugam, Muralidharan [1 ,4 ]
Karnpakdee, Kwankao [3 ]
Heyes, Derren J. [1 ]
Green, Anthony P. [1 ,2 ]
Ludwig, Roland [3 ]
Scrutton, Nigel S. [1 ,2 ]
Kracher, Daniel [1 ,3 ]
机构
[1] Univ Manchester, Manchester Inst Biotechnol, Manchester, Lancs, England
[2] Univ Manchester, Manchester Inst Biotechnol, Future Biomfg Res Hub, Manchester M1 7DN, Lancs, England
[3] Univ Nat Resources & Life Sci, Dept Food Sci & Technol, Biocatalysis & Biosensing Lab, Vienna, Austria
[4] Univ Manchester, Photon Sci Inst, Manchester, Lancs, England
基金
英国生物技术与生命科学研究理事会; 奥地利科学基金会; 英国工程与自然科学研究理事会; 欧洲研究理事会; 欧盟地平线“2020”;
关键词
biomass degradation; cellobiose dehydrogenase; electron paramagnetic resonance; hydrogen peroxide; lytic polysaccharide monooxygenase; type II copper protein;
D O I
10.1111/febs.15704
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Fungal lytic polysaccharide monooxygenases (LPMOs) depolymerise crystalline cellulose and hemicellulose, supporting the utilisation of lignocellulosic biomass as a feedstock for biorefinery and biomanufacturing processes. Recent investigations have shown that H2O2 is the most efficient cosubstrate for LPMOs. Understanding the reaction mechanism of LPMOs with H2O2 is therefore of importance for their use in biotechnological settings. Here, we have employed a variety of spectroscopic and biochemical approaches to probe the reaction of the fungal LPMO9C from N. crassa using H2O2 as a cosubstrate and xyloglucan as a polysaccharide substrate. We show that a single 'priming' electron transfer reaction from the cellobiose dehydrogenase partner protein supports up to 20 H2O2-driven catalytic cycles of a fungal LPMO. Using rapid mixing stopped-flow spectroscopy, alongside electron paramagnetic resonance and UV-Vis spectroscopy, we reveal how H2O2 and xyloglucan interact with the enzyme and investigate transient species that form uncoupled pathways of NcLPMO9C. Our study shows how the H2O2 cosubstrate supports fungal LPMO catalysis and leaves the enzyme in the reduced Cu+ state following a single enzyme turnover, thus preventing the need for external protons and electrons from reducing agents or cellobiose dehydrogenase and supporting the binding of H2O2 for further catalytic steps. We observe that the presence of the substrate xyloglucan stabilises the Cu+ state of LPMOs, which may prevent the formation of uncoupled side reactions.
引用
收藏
页码:4115 / 4128
页数:14
相关论文
共 50 条
  • [1] Kinetic insights into the role of the reductant in H2O2-driven degradation of chitin by a bacterial lytic polysaccharide monooxygenase
    Kuusk, Silja
    Kont, Riin
    Kuusk, Piret
    Heering, Agnes
    Sorlie, Morten
    Bissaro, Bastien
    Eijsink, Vincent G. H.
    Valjamae, Priit
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2019, 294 (05) : 1516 - 1528
  • [2] Kinetics of H2O2-driven degradation of chitin by a bacterial lytic polysaccharide monooxygenase
    Kuusk, Silja
    Bissaro, Bastien
    Kuusk, Piret
    Forsberg, Zarah
    Eijsink, Vincent G. H.
    Sorlie, Morten
    Valjamae, Priit
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2018, 293 (02) : 523 - 531
  • [3] Kinetics of H2O2-driven catalysis by a lytic polysaccharide monooxygenase from the fungus Trichoderma reesei
    Kuusk, Silja
    Valjamae, Priit
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2021, 297 (05)
  • [4] Insights into the H2O2-Driven Lytic Polysaccharide Monooxygenase Activity on Efficient Cellulose Degradation in the White Rot Fungus Irpex lacteus
    Qin, Xing
    Yang, Kun
    Wang, Xiaolu
    Tu, Tao
    Wang, Yuan
    Zhang, Jie
    Su, Xiaoyun
    Yao, Bin
    Huang, Huoqing
    Luo, Huiying
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2023, 71 (21) : 8104 - 8111
  • [5] Activation of O2 and H2O2 by Lytic Polysaccharide Monooxygenases
    Wang, Binju
    Wang, Zhanfeng
    Davies, Gideon J.
    Walton, Paul H.
    Rovira, Carme
    ACS CATALYSIS, 2020, 10 (21) : 12760 - 12769
  • [6] Catalytic Mechanism of Fungal Lytic Polysaccharide Monooxygenases Investigated by First-Principles Calculations
    Bertini, Luca
    Breglia, Raffaella
    Lambrughi, Matteo
    Fantucci, Piercarlo
    De Gioia, Luca
    Borsari, Marco
    Sola, Marco
    Bortolotti, Carlo Augusto
    Bruschi, Maurizio
    INORGANIC CHEMISTRY, 2018, 57 (01) : 86 - 97
  • [7] Structural insights into the enzymatic mechanism of lytic polysaccharide monooxygenases
    Meilleur, Flora
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2021, 77 : C248 - C248
  • [8] Kinetics of H2O2-driven degradation of chitin by a bacterial lytic polysaccharide monooxygenase. (vol 293, pg 523, 2018)
    Kuusk, Silja
    Bissaro, Bastien
    Kuusk, Piret
    Forsberg, Zarah
    Eijsink, Vincent G. H.
    Sorlie, Morten
    Valjamae, Priit
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2018, 293 (31) : 12284 - 12284
  • [9] Theoretical study of the in situ formation of H2O2 by lytic polysaccharide monooxygenases: the reaction mechanism depends on the type of reductant
    Wang, Zhanfeng
    Fu, Xiaodi
    Diao, Wenwen
    Wu, Yao
    Rovira, Carme
    Wang, Binju
    CHEMICAL SCIENCE, 2025, 16 (07) : 3173 - 3186
  • [10] H2O2 in Liquid Fractions of Hydrothermally Pretreated Biomasses: Implications of Lytic Polysaccharide Monooxygenases
    Kont, Riin
    Pihlajaniemi, Ville
    Niemela, Klaus
    Kuusk, Silja
    Marjamaa, Kaisa
    Valjamae, Priit
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (48) : 16220 - 16231