Insights into the H2O2-driven catalytic mechanism of fungal lytic polysaccharide monooxygenases

被引:59
作者
Hedison, Tobias M. [1 ,2 ]
Breslmayr, Erik [1 ,3 ]
Shanmugam, Muralidharan [1 ,4 ]
Karnpakdee, Kwankao [3 ]
Heyes, Derren J. [1 ]
Green, Anthony P. [1 ,2 ]
Ludwig, Roland [3 ]
Scrutton, Nigel S. [1 ,2 ]
Kracher, Daniel [1 ,3 ]
机构
[1] Univ Manchester, Manchester Inst Biotechnol, Manchester, Lancs, England
[2] Univ Manchester, Manchester Inst Biotechnol, Future Biomfg Res Hub, Manchester M1 7DN, Lancs, England
[3] Univ Nat Resources & Life Sci, Dept Food Sci & Technol, Biocatalysis & Biosensing Lab, Vienna, Austria
[4] Univ Manchester, Photon Sci Inst, Manchester, Lancs, England
基金
英国生物技术与生命科学研究理事会; 欧洲研究理事会; 英国工程与自然科学研究理事会; 欧盟地平线“2020”; 奥地利科学基金会;
关键词
biomass degradation; cellobiose dehydrogenase; electron paramagnetic resonance; hydrogen peroxide; lytic polysaccharide monooxygenase; type II copper protein;
D O I
10.1111/febs.15704
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Fungal lytic polysaccharide monooxygenases (LPMOs) depolymerise crystalline cellulose and hemicellulose, supporting the utilisation of lignocellulosic biomass as a feedstock for biorefinery and biomanufacturing processes. Recent investigations have shown that H2O2 is the most efficient cosubstrate for LPMOs. Understanding the reaction mechanism of LPMOs with H2O2 is therefore of importance for their use in biotechnological settings. Here, we have employed a variety of spectroscopic and biochemical approaches to probe the reaction of the fungal LPMO9C from N. crassa using H2O2 as a cosubstrate and xyloglucan as a polysaccharide substrate. We show that a single 'priming' electron transfer reaction from the cellobiose dehydrogenase partner protein supports up to 20 H2O2-driven catalytic cycles of a fungal LPMO. Using rapid mixing stopped-flow spectroscopy, alongside electron paramagnetic resonance and UV-Vis spectroscopy, we reveal how H2O2 and xyloglucan interact with the enzyme and investigate transient species that form uncoupled pathways of NcLPMO9C. Our study shows how the H2O2 cosubstrate supports fungal LPMO catalysis and leaves the enzyme in the reduced Cu+ state following a single enzyme turnover, thus preventing the need for external protons and electrons from reducing agents or cellobiose dehydrogenase and supporting the binding of H2O2 for further catalytic steps. We observe that the presence of the substrate xyloglucan stabilises the Cu+ state of LPMOs, which may prevent the formation of uncoupled side reactions.
引用
收藏
页码:4115 / 4128
页数:14
相关论文
共 62 条
  • [1] NMR structure of a lytic polysaccharide monooxygenase provides insight into copper binding, protein dynamics, and substrate interactions
    Aachmann, Finn L.
    Sorlie, Morten
    Skjak-Braek, Gudmund
    Eijsink, Vincent G. H.
    Vaaje-Kolstad, Gustav
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (46) : 18779 - 18784
  • [2] Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation
    Agger, Jane W.
    Isaksen, Trine
    Varnai, Aniko
    Vidal-Melgosa, Silvia
    Willats, William G. T.
    Ludwig, Roland
    Horn, Svein J.
    Eijsink, Vincent G. H.
    Westereng, Bjorge
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (17) : 6287 - 6292
  • [3] Oxidative Cleavage of Cellulose by Fungal Copper-Dependent Polysaccharide Monooxygenases
    Beeson, William T.
    Phillips, Christopher M.
    Cate, Jamie H. D.
    Marletta, Michael A.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (02) : 890 - 892
  • [4] Molecular mechanism of the chitinolytic peroxygenase reaction
    Bissaro, Bastien
    Streit, Bennett
    Isaksen, Ingvild
    Eijsink, Vincent G. H.
    Beckham, Gregg T.
    DuBois, Jennifer L.
    Rohr, Asmund K.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (03) : 1504 - 1513
  • [5] Oxidoreductases and Reactive Oxygen Species in Conversion of Lignocellulosic Biomass
    Bissaro, Bastien
    Varnai, Aniko
    Rohr, Asmund K.
    Eijsink, Vincent G. H.
    [J]. MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2018, 82 (04)
  • [6] Bissaro B, 2017, NAT CHEM BIOL, V13, P1123, DOI [10.1038/NCHEMBIO.2470, 10.1038/nchembio.2470]
  • [7] Structural and Functional Characterization of a Lytic Polysaccharide Monooxygenase with Broad Substrate Specificity
    Borisova, Anna S.
    Isaksen, Trine
    Dimarogona, Maria
    Kognole, Abhishek A.
    Mathiesen, Geir
    Varnai, Aniko
    Rohr, Asmund K.
    Payne, Christina M.
    Sorlie, Morten
    Sandgren, Mats
    Eijsink, Vincent G. H.
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2015, 290 (38) : 22955 - 22969
  • [8] Protein Conformational Change Is Essential for Reductive Activation of Lytic Polysaccharide Monooxygenase by Cellobiose Dehydrogenase
    Breslmayr, Erik
    Laurent, Christophe V. F. P.
    Scheiblbrandner, Stefan
    Jerkovic, Anita
    Heyes, Derren J.
    Oostenbrink, Chris
    Ludwig, Roland
    Hedison, Tobias M.
    Scrutton, Nigel S.
    Kracher, Daniel
    [J]. ACS CATALYSIS, 2020, 10 (09) : 4842 - 4853
  • [9] Improved spectrophotometric assay for lytic polysaccharide monooxygenase
    Breslmayr, Erik
    Daly, Sarah
    Pozgajcic, Alen
    Chang, Hucheng
    Rezic, Tonci
    Oostenbrink, Chris
    Ludwig, Roland
    [J]. BIOTECHNOLOGY FOR BIOFUELS, 2019, 12 (01)
  • [10] Structural basis for the enhancement of virulence by viral spindles and their in vivo crystallization
    Chiu, Elaine
    Hijnen, Marcel
    Bunker, Richard D.
    Boudes, Marion
    Rajendran, Chitra
    Aizel, Kaheina
    Olieric, Vincent
    Schulze-Briese, Clemens
    Mitsuhashi, Wataru
    Young, Vivienne
    Ward, Vernon K.
    Bergoin, Max
    Metcalf, Peter
    Coulibaly, Fasseli
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (13) : 3973 - 3978