Semantic Segmentation of High Spatial Resolution Remote Sensing Imagery Based on Weighted Attention U-Net

被引:1
|
作者
Zhang, Yue [1 ]
Wang, Leiguang [2 ]
Yang, Ruiqi [3 ]
Chen, Nan [1 ]
Zhao, Yili [3 ]
Dai, Qinling [4 ]
机构
[1] Southwest Forestry Univ, Fac Forestry, Kunming, Yunnan, Peoples R China
[2] Southwest Forestry Univ, Inst Big Data & Artificial Intelligence, Kunming, Yunnan, Peoples R China
[3] Southwest Forestry Univ, Coll Big Data & Intelligent Engn, Kunming, Yunnan, Peoples R China
[4] Southwest Forestry Univ, Art & Design Coll, Kunming, Yunnan, Peoples R China
来源
FOURTEENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING, ICGIP 2022 | 2022年 / 12705卷
关键词
Semantic segmentation; deep learning; attention gate model; weighted attention U-Net; GID dataset;
D O I
10.1117/12.2680206
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, with the development of deep learning and attention mechanism, more research has been carried out to realize semantic image segmentation based on deep learning integrated attention mechanisms. However, the current semantic segmentation methods have low segmentation accuracy, high computation cost, and serious loss of detailed information. In this paper, a lightweight designed attention gate model was introduced to reduce the computation cost. And because it can suppress irrelevant regions in the input image, while highlighting the salient features of specific tasks, the combination of the two weighting factors input features (x(l)) and gating signal (g) in this structure can improve segmentation accuracy and reduce loss of detail. Therefore, this study used the weighted attention U-Net network to perform semantic segmentation on the GID dataset and finally evaluated it on the four indicators of Precision, Recall, F1-Sorce, and mIoU. This result shows that different weight values have a more significant impact on the experimental results. The attention U-Net with the best weight combination compared with the traditional U-Net network, Precision, Recall, F1-Sorce, and mIoU are increased by 0.88%, 1.4%, 1.13%, and 1.2%, respectively. Compared with the original attention U-Net, Precision, Recall, F1-Sorce, and mIoU are increased by 0.86%, 1.24%, 1.04%, and 1.75%, respectively.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] CS U-NET: A Medical Image Segmentation Method Integrating Spatial and Contextual Attention Mechanisms Based on U-NET
    Zhang, Fanyang
    Fan, Zhang
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2025, 35 (02)
  • [22] SCAU-Net: Spatial-Channel Attention U-Net for Gland Segmentation
    Zhao, Peng
    Zhang, Jindi
    Fang, Weijia
    Deng, Shuiguang
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2020, 8
  • [23] Multiscale feature U-Net for remote sensing image segmentation
    Wei, Youhua
    Liu, Xuzhi
    Lei, Jingxiong
    Yue, Ruihan
    Feng, Jun
    JOURNAL OF APPLIED REMOTE SENSING, 2022, 16 (01)
  • [24] DEANet: Dual Encoder with Attention Network for Semantic Segmentation of Remote Sensing Imagery
    Wei, Haoran
    Xu, Xiangyang
    Ou, Ni
    Zhang, Xinru
    Dai, Yaping
    REMOTE SENSING, 2021, 13 (19)
  • [25] Intelligent Optimization Learning for Semantic Segmentation of High Spatial Resolution Remote Sensing Images
    Shao Z.
    Sun Y.
    Xi J.
    Li Y.
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2022, 47 (02): : 234 - 241
  • [26] SEMANTIC SEGMENTATION OF UAV IMAGES BASED ON U-NET IN URBAN AREA
    Majidizadeh, A.
    Hasani, H.
    Jafari, M.
    ISPRS GEOSPATIAL CONFERENCE 2022, JOINT 6TH SENSORS AND MODELS IN PHOTOGRAMMETRY AND REMOTE SENSING, SMPR/4TH GEOSPATIAL INFORMATION RESEARCH, GIRESEARCH CONFERENCES, VOL. 10-4, 2023, : 451 - 457
  • [27] Image Semantic Segmentation for Autonomous Driving Based on Improved U-Net
    Sun, Chuanlong
    Zhao, Hong
    Mu, Liang
    Xu, Fuliang
    Lu, Laiwei
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2023, 136 (01): : 787 - 801
  • [28] SMAF-Net: Sharing Multiscale Adversarial Feature for High-Resolution Remote Sensing Imagery Semantic Segmentation
    Chen, Jie
    Zhu, Jingru
    Sun, Geng
    Li, Jianhui
    Deng, Min
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (11) : 1921 - 1925
  • [29] SEMANTIC SEGMENTATION OF HIGH RESOLUTION REMOTE SENSING IMAGE BASED ON BATCH-ATTENTION MECHANISM
    Su, Yanzhou
    Wu, Yongjian
    Wang, Min
    Wang, Feng
    Cheng, Jian
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 3856 - 3859
  • [30] Individual tree crown delineation in high-resolution remote sensing images based on U-Net
    Maximilian Freudenberg
    Paul Magdon
    Nils Nölke
    Neural Computing and Applications, 2022, 34 : 22197 - 22207