Semantic Segmentation of High Spatial Resolution Remote Sensing Imagery Based on Weighted Attention U-Net

被引:1
|
作者
Zhang, Yue [1 ]
Wang, Leiguang [2 ]
Yang, Ruiqi [3 ]
Chen, Nan [1 ]
Zhao, Yili [3 ]
Dai, Qinling [4 ]
机构
[1] Southwest Forestry Univ, Fac Forestry, Kunming, Yunnan, Peoples R China
[2] Southwest Forestry Univ, Inst Big Data & Artificial Intelligence, Kunming, Yunnan, Peoples R China
[3] Southwest Forestry Univ, Coll Big Data & Intelligent Engn, Kunming, Yunnan, Peoples R China
[4] Southwest Forestry Univ, Art & Design Coll, Kunming, Yunnan, Peoples R China
关键词
Semantic segmentation; deep learning; attention gate model; weighted attention U-Net; GID dataset;
D O I
10.1117/12.2680206
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, with the development of deep learning and attention mechanism, more research has been carried out to realize semantic image segmentation based on deep learning integrated attention mechanisms. However, the current semantic segmentation methods have low segmentation accuracy, high computation cost, and serious loss of detailed information. In this paper, a lightweight designed attention gate model was introduced to reduce the computation cost. And because it can suppress irrelevant regions in the input image, while highlighting the salient features of specific tasks, the combination of the two weighting factors input features (x(l)) and gating signal (g) in this structure can improve segmentation accuracy and reduce loss of detail. Therefore, this study used the weighted attention U-Net network to perform semantic segmentation on the GID dataset and finally evaluated it on the four indicators of Precision, Recall, F1-Sorce, and mIoU. This result shows that different weight values have a more significant impact on the experimental results. The attention U-Net with the best weight combination compared with the traditional U-Net network, Precision, Recall, F1-Sorce, and mIoU are increased by 0.88%, 1.4%, 1.13%, and 1.2%, respectively. Compared with the original attention U-Net, Precision, Recall, F1-Sorce, and mIoU are increased by 0.86%, 1.24%, 1.04%, and 1.75%, respectively.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] U-Net Ensemble for Enhanced Semantic Segmentation in Remote Sensing Imagery
    Dimitrovski, Ivica
    Spasev, Vlatko
    Loshkovska, Suzana
    Kitanovski, Ivan
    REMOTE SENSING, 2024, 16 (12)
  • [2] SEGMENTATION OF HIGH SPATIAL RESOLUTION REMOTE SENSING IMAGE BASED ON U-NET CONVOLUTIONAL NETWORKS
    Zheng, Xiaoxiong
    Chen, Tao
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2571 - 2574
  • [3] Semantic Segmentation of High-Resolution Remote Sensing Images with Improved U-Net Based on Transfer Learning
    Zhang, Hua
    Jiang, Zhengang
    Zheng, Guoxun
    Yao, Xuekun
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2023, 16 (01)
  • [4] Semantic Segmentation of High-Resolution Remote Sensing Images with Improved U-Net Based on Transfer Learning
    Hua Zhang
    Zhengang Jiang
    Guoxun Zheng
    Xuekun Yao
    International Journal of Computational Intelligence Systems, 16
  • [5] Bilateral U-Net semantic segmentation with spatial attention mechanism
    Zhao Guangzhe
    Zhang Yimeng
    Maoning Ge
    Yu Min
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2023, 8 (02) : 297 - 307
  • [6] Semantic segmentation of remote sensing images combined with attention mechanism and feature enhancement U-Net
    Jiang, Jionghui
    Feng, Xi'an
    Ye, QiLei
    Hu, Zhongyi
    Gu, Zhiyang
    Huang, Hui
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2023, 44 (19) : 6219 - 6232
  • [7] Improved U-Net remote sensing image semantic segmentation method
    Hu G.
    Yang C.
    Xu L.
    Shang H.
    Wang Z.
    Qin Z.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2023, 52 (06): : 980 - 989
  • [8] CTMU-Net: An Improved U-Net for Semantic Segmentation of Remote-Sensing Images Based on the Combined Attention Mechanism
    Li, Yuanjun
    Zhu, Zhiyu
    Li, Yuanjiang
    Zhang, Jinglin
    Li, Xi
    Shang, Shuyao
    Zhu, Dewen
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 10148 - 10161
  • [9] An improved U-Net method for the semantic segmentation of remote sensing images
    Zhongbin Su
    Wei Li
    Zheng Ma
    Rui Gao
    Applied Intelligence, 2022, 52 : 3276 - 3288
  • [10] An improved U-Net method for the semantic segmentation of remote sensing images
    Su, Zhongbin
    Li, Wei
    Ma, Zheng
    Gao, Rui
    APPLIED INTELLIGENCE, 2022, 52 (03) : 3276 - 3288