Dissipative preparation of multipartite Greenberger-Horne-Zeilinger states of Rydberg atoms*

被引:3
作者
Yang, Chong [1 ,2 ,3 ,4 ]
Li, Dong-Xiao [5 ]
Shao, Xiao-Qiang [1 ,2 ,3 ,4 ]
机构
[1] Northeast Normal Univ, Ctr Quantum Sci, Changchun 130024, Peoples R China
[2] Northeast Normal Univ, Sch Phys, Changchun 130024, Peoples R China
[3] Northeast Normal Univ, Ctr Adv Optoelect Funct Mat Res, Changchun 130024, Peoples R China
[4] Northeast Normal Univ, Key Lab UV Light Emitting Mat & Technol, Minist Educ, Changchun 130024, Peoples R China
[5] Huazhong Univ Sci & Technol, Sch Phys, Int Joint Lab Quantum Sensing & Quantum Metrol, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
multipartite entanglement; Lyapunov control; Rydberg antiblockade; quantum dissipation; QUANTUM INFORMATION; DYNAMICS; GATES;
D O I
10.1088/1674-1056/abd755
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The multipartite Greenberger-Horne-Zeilinger (GHZ) states play an important role in large-scale quantum information processing. We utilize the polychromatic driving fields and the engineered spontaneous emissions of Rydberg states to dissipatively drive three- and four-partite neutral atom systems into the steady GHZ states, at the presence of the next-nearest neighbor interaction of excited Rydberg states. Furthermore, the introduction of quantum Lyapunov control can help us optimize the dissipative dynamics of the system so as to shorten the convergence time of the target state, improve the robustness against the spontaneous radiations of the excited Rydberg states, and release the limiting condition for the strengths of the polychromatic driving fields. Under the feasible experimental conditions, the fidelities of three- and four-partite GHZ states can be stabilized at 99.24 % and 98.76 %, respectively.
引用
收藏
页数:8
相关论文
共 93 条
  • [61] Quantum computing
    Steane, A
    [J]. REPORTS ON PROGRESS IN PHYSICS, 1998, 61 (02) : 117 - 173
  • [62] Rydberg antiblockade regimes: Dynamics and applications
    Su, S. -L.
    Guo, F. -Q.
    Wu, J. -L.
    Jin, Z.
    Shao, X. Q.
    Zhang, S.
    [J]. EPL, 2020, 131 (05)
  • [63] Rydberg quantum controlled-phase gate with one control and multiple target qubits
    Su, S. L.
    [J]. CHINESE PHYSICS B, 2018, 27 (11)
  • [64] One-step construction of the multiple-qubit Rydberg controlled-PHASE gate
    Su, S. L.
    Shen, H. Z.
    Liang, Erjun
    Zhang, Shou
    [J]. PHYSICAL REVIEW A, 2018, 98 (03)
  • [65] Nondestructive Rydberg parity meter and its applications
    Su, S-L
    Guo, Fu-Qiang
    Tian, L.
    Zhu, X-Y
    Yan, L-L
    Liang, E-J
    Feng, M.
    [J]. PHYSICAL REVIEW A, 2020, 101 (01)
  • [66] Applications of the modified Rydberg antiblockade regime with simultaneous driving
    Su, Shi-Lei
    Tian, Yongzhi
    Shen, H. Z.
    Zang, Huaping
    Liang, Erjun
    Zhang, Shou
    [J]. PHYSICAL REVIEW A, 2017, 96 (04)
  • [67] Fast Rydberg antiblockade regime and its applications in quantum logic gates
    Su, Shi-Lei
    Gao, Ya
    Liang, Erjun
    Zhang, Shou
    [J]. PHYSICAL REVIEW A, 2017, 95 (02)
  • [68] Su SL., 2016, PHYS REV A, V93, DOI [10.1103/PhysRevA.68.042317, DOI 10.1103/PHYSREVA.68.042317]
  • [69] General formulation of locally designed coherent control theory for quantum system
    Sugawara, M
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2003, 118 (15) : 6784 - 6800
  • [70] Implementation of quantum phase gate between two atoms via Rydberg antiblockade and adiabatic passage
    Tan, Xi
    Wu, Jin-Lei
    Deng, Can
    Mao, Wei-Jian
    Wang, Hai-Tao
    Ji, Xin
    [J]. CHINESE PHYSICS B, 2018, 27 (10)