Dissipative preparation of multipartite Greenberger-Horne-Zeilinger states of Rydberg atoms*

被引:3
作者
Yang, Chong [1 ,2 ,3 ,4 ]
Li, Dong-Xiao [5 ]
Shao, Xiao-Qiang [1 ,2 ,3 ,4 ]
机构
[1] Northeast Normal Univ, Ctr Quantum Sci, Changchun 130024, Peoples R China
[2] Northeast Normal Univ, Sch Phys, Changchun 130024, Peoples R China
[3] Northeast Normal Univ, Ctr Adv Optoelect Funct Mat Res, Changchun 130024, Peoples R China
[4] Northeast Normal Univ, Key Lab UV Light Emitting Mat & Technol, Minist Educ, Changchun 130024, Peoples R China
[5] Huazhong Univ Sci & Technol, Sch Phys, Int Joint Lab Quantum Sensing & Quantum Metrol, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
multipartite entanglement; Lyapunov control; Rydberg antiblockade; quantum dissipation; QUANTUM INFORMATION; DYNAMICS; GATES;
D O I
10.1088/1674-1056/abd755
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The multipartite Greenberger-Horne-Zeilinger (GHZ) states play an important role in large-scale quantum information processing. We utilize the polychromatic driving fields and the engineered spontaneous emissions of Rydberg states to dissipatively drive three- and four-partite neutral atom systems into the steady GHZ states, at the presence of the next-nearest neighbor interaction of excited Rydberg states. Furthermore, the introduction of quantum Lyapunov control can help us optimize the dissipative dynamics of the system so as to shorten the convergence time of the target state, improve the robustness against the spontaneous radiations of the excited Rydberg states, and release the limiting condition for the strengths of the polychromatic driving fields. Under the feasible experimental conditions, the fidelities of three- and four-partite GHZ states can be stabilized at 99.24 % and 98.76 %, respectively.
引用
收藏
页数:8
相关论文
共 93 条
  • [21] Entanglement detection
    Guehne, Otfried
    Toth, Geza
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2009, 474 (1-6): : 1 - 75
  • [22] Quantum repeaters based on Rydberg-blockade-coupled atomic ensembles
    Han, Yang
    He, Bing
    Heshami, Khabat
    Li, Cheng-Zu
    Simon, Christoph
    [J]. PHYSICAL REVIEW A, 2010, 81 (05):
  • [23] Dissipative generation for steady-state entanglement of two transmons in circuit QED
    He, Shuang
    Liu, Dan
    Li, Ming-Hao
    [J]. CHINESE PHYSICS B, 2019, 28 (08)
  • [24] Quantum secret sharing
    Hillery, M
    Buzek, V
    Berthiaume, A
    [J]. PHYSICAL REVIEW A, 1999, 59 (03): : 1829 - 1834
  • [25] Quantum entanglement
    Horodecki, Ryszard
    Horodecki, Pawel
    Horodecki, Michal
    Horodecki, Karol
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (02) : 865 - 942
  • [26] Optimal Lyapunov-based quantum control for quantum systems
    Hou, S. C.
    Khan, M. A.
    Yi, X. X.
    Dong, Daoyi
    Petersen, Ian R.
    [J]. PHYSICAL REVIEW A, 2012, 86 (02):
  • [27] Lyapunov-based state transfer and maintenance for non-Markovian quantum system
    Hu, Juju
    Ke, Qiang
    Ji, Yinghua
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2016, 30 (25):
  • [28] Fast quantum gates for neutral atoms
    Jaksch, D
    Cirac, JI
    Zoller, P
    Rolston, SL
    Côté, R
    Lukin, MD
    [J]. PHYSICAL REVIEW LETTERS, 2000, 85 (10) : 2208 - 2211
  • [29] Teleportation of a two-atom entangled state with a thermal cavity
    Jin, LH
    Jin, XR
    Zhang, S
    [J]. PHYSICAL REVIEW A, 2005, 72 (02):
  • [30] Jin RB., 2020, QUANTUM ENG, V2, P38, DOI [10.1103/PhysRevLett.95.200502, DOI 10.1103/PHYSREVLETT.95.200502]