Associated spherical partner of space curve in Euclidean 3-space

被引:2
作者
Liu, Huili [1 ]
Liu, Yixuan [2 ]
Dal Jung, Seoung [3 ,4 ]
机构
[1] Northeastern Univ, Dept Math, Shenyang 110004, Liaoning, Peoples R China
[2] Peking Univ, Coll Life Sci, Beijing 100871, Peoples R China
[3] Jeju Natl Univ, Dept Math, Jeju 690756, South Korea
[4] Jeju Natl Univ, Res Inst Basic Sci, Jeju 690756, South Korea
基金
新加坡国家研究基金会;
关键词
Associated curve; Spherical curve; Curvature; Torsion; Rectifying curve;
D O I
10.1016/j.topol.2019.06.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we define associated spherical partner, radial function and radial spherical function for space curve which doesn't lie on the sphere in Euclidean 3-space. Using these notions we discuss some special curves and their associated spherical partners. Especially we give a new necessary and sufficient condition for the rectifying curves in Euclidean 3-space. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:79 / 88
页数:10
相关论文
共 7 条
[1]  
Chen B. Y., 2005, Bull. Inst. Math. Acad. Sin, V33, P77
[2]   When does the position vector of a space curve always lie in its rectifying plane? [J].
Chen, BY .
AMERICAN MATHEMATICAL MONTHLY, 2003, 110 (02) :147-152
[3]  
do Carmo Manfredo P., 1976, DIFFERENTIAL GEOMETR
[4]   Curves in Three Dimensional Riemannian Space Forms [J].
Liu, Huili .
RESULTS IN MATHEMATICS, 2014, 66 (3-4) :469-480
[5]   Curves in Affine and Semi-Euclidean Spaces [J].
Liu, Huili .
RESULTS IN MATHEMATICS, 2014, 65 (1-2) :235-249
[6]   Mannheim partner curves in 3-space [J].
Liu, Huili ;
Wang, Fan .
JOURNAL OF GEOMETRY, 2008, 88 (1-2) :120-126
[7]  
Su Buqing, 1986, INTRO FUNCTIONAL DIF