Matchings in simplicial complexes, circuits and toric varieties

被引:5
作者
Katsabekis, Anargyros [1 ]
Thoma, Apostolos [1 ]
机构
[1] Univ Ioannina, Dept Math, GR-45110 Ioannina, Greece
关键词
chromatic number; clique complex; circuits; lattice ideals; matchings; simplicial complex; toric varieties;
D O I
10.1016/j.jcta.2006.05.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using a generalized notion of matching in a simplicial complex and circuits of vector configurations, we compute lower bounds for the minimum number of generators, the binomial arithmetical rank and the A-homogeneous arithmetical rank of a lattice ideal. Prime lattice ideals are toric ideals, i.e. the defining ideals of toric varieties. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:300 / 310
页数:11
相关论文
共 11 条
  • [1] [Anonymous], 1994, COMMUTATIVE ALGEBRA
  • [2] [Anonymous], THESIS CORNELL U
  • [3] ALGORITHM FOR CHROMATIC NUMBER OF A GRAPH
    CHRISTOFIDES, N
    [J]. COMPUTER JOURNAL, 1971, 14 (01) : 38 - +
  • [4] *COCOATEAM, COCOA SYST DOIN COMP
  • [5] Diaconis P., 1998, Progr. Math, V161, P173
  • [6] PATHS TREES AND FLOWERS
    EDMONDS, J
    [J]. CANADIAN JOURNAL OF MATHEMATICS, 1965, 17 (03): : 449 - &
  • [7] Binomial ideals
    Eisenbud, D
    Sturmfels, B
    [J]. DUKE MATHEMATICAL JOURNAL, 1996, 84 (01) : 1 - 45
  • [8] Gallai T., 1959, ANN U SCI BUDAP, V2, P133
  • [9] Stanley-Reisner rings and the radicals of lattice ideals
    Katsabekis, A
    Morales, M
    Thoma, A
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2006, 204 (03) : 584 - 601
  • [10] Micali S., 1980, 21st Annual Symposium on Foundations of Computer Science, P17