Unsupervised Sleep and Wake State Identification in Long-Term Electrocorticography Recordings

被引:0
作者
Sun, Samantha [1 ,6 ]
Jiang, Linxing Preston [2 ,6 ]
Peterson, Steven M. [3 ,6 ]
Herron, Jeffrey [4 ,6 ]
Weaver, Kurt [5 ,6 ]
Ko, Andrew [4 ,6 ]
Ojemann, Jeffrey [4 ,6 ]
Rao, Rajesh P. N. [2 ,6 ]
机构
[1] Univ Washington, Dept Bioengn, Seattle, WA 98195 USA
[2] Univ Washington, Paul G Allen Sch Comp Sci & Engn, Seattle, WA 98195 USA
[3] Univ Washington, Dept Biol, Seattle, WA 98195 USA
[4] Univ Washington, Dept Neurol Surg, Seattle, WA 98195 USA
[5] Univ Washington, Dept Radiol, Seattle, WA 98195 USA
[6] Univ Washington, Ctr Neurotechnol, Seattle, WA 98195 USA
来源
42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20 | 2020年
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Studying the neural correlates of sleep can lead to revelations in our understanding of sleep and its interplay with different neurological disorders. Sleep research relies on manual annotation of sleep stages based on rules developed for healthy adults. Automating sleep stage annotation can expedite sleep research and enable us to better understand atypical sleep patterns. Our goal was to create a fully unsupervised approach to label sleep and wake states in human electrocorticography (ECoG) data from epilepsy patients. Here, we demonstrate that with continuous data from a single ECoG electrode, hidden semi-Markov models (HSMM) perform best in classifying sleep/wake states without excessive transitions, with a mean accuracy (n=4) of 85.2% compared to using Kmeans clustering (72.2%) and hidden Markov models (81.5%). Our results confirm that HSMMs produce meaningful labels for ECoG data and establish the groundwork to apply this model to cluster sleep stages and potentially other behavioral states.
引用
收藏
页码:629 / 632
页数:4
相关论文
共 17 条
[1]  
[Anonymous], 2012, Adv. Artif. Neu. Sys., DOI DOI 10.1155/2012/107046
[2]  
[Anonymous], 2008, Introduction to information retrieval
[3]   Rules for Scoring Respiratory Events in Sleep: Update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events [J].
Berry, Richard B. ;
Budhiraja, Rohit ;
Gottlieb, Daniel J. ;
Gozal, David ;
Iber, Conrad ;
Kapur, Vishesh K. ;
Marcus, Carole L. ;
Mehra, Reena ;
Parthasarathy, Sairam ;
Quan, Stuart F. ;
Redline, Susan ;
Strohl, Kingman P. ;
Ward, Sally L. Davidson ;
Tangredi, Michelle M. .
JOURNAL OF CLINICAL SLEEP MEDICINE, 2012, 8 (05) :597-619
[4]  
Buzaki G., 2006, Rhythms of the Brain
[5]   Interrater reliability for sleep scoring according to the Rechtschaffen & Kales and the new AASM standard [J].
Danker-Hopfe, Heidi ;
Anderer, Peter ;
Zeitlhofer, Josef ;
Boeck, Marion ;
Dorn, Hans ;
Gruber, Georg ;
Heller, Esther ;
Loretz, Erna ;
Moser, Doris ;
Parapatics, Silvia ;
Saletu, Bernd ;
Schmidt, Andrea ;
Dorffner, Georg .
JOURNAL OF SLEEP RESEARCH, 2009, 18 (01) :74-84
[6]   Sleep problems in children with neurological disorders [J].
Dorris, Liam ;
Scott, Nicola ;
Zuberi, Sameer ;
Gibson, Neil ;
Espie, Colin .
DEVELOPMENTAL NEUROREHABILITATION, 2008, 11 (02) :95-114
[7]   VITERBI ALGORITHM [J].
FORNEY, GD .
PROCEEDINGS OF THE IEEE, 1973, 61 (03) :268-278
[8]  
Johnson MJ, 2013, J MACH LEARN RES, V14, P673
[9]   Automated unsupervised behavioral state classification using intracranial electrophysiology [J].
Kremen, Vaclav ;
Brinkmann, Benjamin H. ;
Van Gompel, Jamie J. ;
Stead, Matt ;
St Louis, Erik K. ;
Worrell, Gregory A. .
JOURNAL OF NEURAL ENGINEERING, 2019, 16 (02)
[10]   Automatic Human Sleep Stage Scoring Using Deep Neural Networks [J].
Malafeev, Alexander ;
Laptev, Dmitry ;
Bauer, Stefan ;
Omlin, Ximena ;
Wierzbicka, Aleksandra ;
Wichniak, Adam ;
Jernajczyk, Wojciech ;
Riener, Robert ;
Buhmann, Joachim ;
Achermann, Peter .
FRONTIERS IN NEUROSCIENCE, 2018, 12