Facial structures for positive linear maps in two-dimensional matrix algebra

被引:14
作者
Byeon, ES [1 ]
Kye, SH [1 ]
机构
[1] Seoul Natl Univ, Dept Math, Seoul 151742, South Korea
关键词
Fourier Analysis; Operator Theory; Lattice Structure; Potential Theory; Convex Cone;
D O I
10.1023/A:1021397312586
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We completely determine the lattice structure for the faces of the convex cone of all positive linear maps between the 2 x 2 matrix algebras, in terms of pairs of subspaces of M-2.
引用
收藏
页码:369 / 380
页数:12
相关论文
共 18 条
[1]   GENERALIZED CHOI MAPS IN 3-DIMENSIONAL MATRIX ALGEBRA [J].
CHO, SJ ;
KYE, SH ;
LEE, SG .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1992, 171 :213-224
[2]   COMPLETELY POSITIVE LINEAR MAPS ON COMPLEX MATRICES [J].
CHOI, MD .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1975, 10 (03) :285-290
[3]   POSITIVE SEMIDEFINITE BIQUADRATIC FORMS [J].
CHOI, MD .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1975, 12 (02) :95-100
[4]   EXTREMAL POSITIVE SEMIDEFINITE FORMS [J].
CHOI, MD ;
LAM, TY .
MATHEMATISCHE ANNALEN, 1977, 231 (01) :1-18
[5]  
Eom MH, 2000, MATH SCAND, V86, P130
[6]   Atomic positive linear maps in matrix algebras [J].
Ha, KC .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1998, 34 (06) :591-599
[7]   INDECOMPOSABLE EXTREME POSITIVE LINEAR-MAPS IN MATRIX ALGEBRAS [J].
KIM, HJ ;
KYE, SH .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1994, 26 :575-581
[8]  
Kraus K., 1974, Foundations of Quantum Mechanics and Ordered Linear Spaces, P206, DOI [10.1007/3-540-06725-6_17, DOI 10.1007/3-540-06725-6_17]
[9]  
KYE SH, 1992, ELEMENTARY OPERATORS & APPLICATIONS, IN MEMORY OF DOMINGO A HERRERO, P205
[10]   Facial structures for the positive linear maps between matrix algebras [J].
Kye, SH .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1996, 39 (01) :74-82