Medium-density particleboards from modified rice husks and soybean protein concentrate-based adhesives

被引:126
作者
Ciannamea, Emiliano M. [1 ]
Stefani, Pablo M. [1 ]
Ruseckaite, Roxana A. [1 ]
机构
[1] Univ Mar del Plata, Res Inst Mat Sci & Technol, Natl Res Council, Fac Engn, RA-7600 Mar Del Plata, Argentina
关键词
Particleboard; Rice husk; Soybean protein concentrate; Chemical modification; Mechanical properties; MODIFIED SOY PROTEIN; WHEAT-STRAW; THERMAL-DEGRADATION; WATER-ABSORPTION; BOARDS; FIBER; COMPOSITES; PYROLYSIS; STRENGTH; BAGASSE;
D O I
10.1016/j.biortech.2009.08.084
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
The main goal of this work was to evaluate the technical feasibility of using rice husk (RH) as wood substitute in the production of environmentally sound medium-density particleboards using adhesives from soybean protein concentrate (SPC). Chemical modification of rice husk with sodium hydroxide and sodium hydroxide followed by hydrogen peroxide (bleaching) were undertaken to evaluate the effect of such treatments on the composition and topology of rice husk and the performance of produced panels. Both treatments were efficient in partially eliminating hemicelluloses, lignin and silica from RH, as evidenced by thermo-gravimetric analysis (TGA). Scanning electron microscopy observations suggested that alkaline treatment resulted in a more damaged RH substrate than bleaching. The dependence of mechanical properties (modulus of rupture, modulus of elasticity. and internal bond) and the physical properties (water absorption and thickness swelling) on chemical treatments performed on both, rice husk and SPC was studied. Bleached-rice husk particleboards bonded with alkaline-treated soybean protein concentrate displayed the best set of final properties. Particleboards with this formulation met the minimum requirements of internal bond, modulus of elasticity and modulus of rupture recommended by the US Standard ANSI/A208.1 specifications for M I, MS and M2-grade medium-density particleboards, but failed to achieve the thickness swelling value recommended for general use panels. This limitation of soybean protein concentrate-bonded rice husk particleboards was counterbalanced by the advantage of being formal dehyde-free which makes them a suitable alternative for indoor applications. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:818 / 825
页数:8
相关论文
共 42 条
[1]   A pilot plant for production of ceiling boards from rice husks [J].
Ajiwe, VIE ;
Okeke, CA ;
Ekwuozor, SC ;
Uba, IC .
BIORESOURCE TECHNOLOGY, 1998, 66 (01) :41-43
[2]   Manufacture of medium density fiberboard (MDF) panels from rhododendron (R-ponticum L.) biomass [J].
Akgul, Mehmet ;
Camlibel, Osman .
BUILDING AND ENVIRONMENT, 2008, 43 (04) :438-443
[3]  
Almeida RR, 2002, BIORESOURCE TECHNOL, V85, P159, DOI 10.1016/S0960-8524(02)00082-2
[4]   Mechanical properties and water absorption behavior of composites made from a biodegradable matrix and alkaline-treated sisal fibers [J].
Alvarez, VA ;
Ruscekaite, RA ;
Vázquez, A .
JOURNAL OF COMPOSITE MATERIALS, 2003, 37 (17) :1575-1588
[5]   Properties of wheat straw particleboards bonded with different types of resin [J].
Boquillon, N ;
Elbez, G ;
Schönfeld, U .
JOURNAL OF WOOD SCIENCE, 2004, 50 (03) :230-235
[6]  
BURGESS HD, 1979, DEGRADATION CELLULOS, V4, P15
[7]   Adhesive properties of modified soybean flour in wheat straw particleboard [J].
Cheng, EZ ;
Sun, XZ ;
Karr, GS .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2004, 35 (03) :297-302
[8]   Incorporation of hazelnut shell and husk in MDF production [J].
Coepuer, Yalcin ;
Gueler, Cengiz ;
Tascioglu, Cihat ;
Tozluoglu, Ayhan .
BIORESOURCE TECHNOLOGY, 2008, 99 (15) :7402-7406
[9]   Some chemical properties of hazelnut husk and its suitability for particleboard production [J].
Copur, Y. ;
Guler, C. ;
Akgul, M. ;
Tascioglu, C. .
BUILDING AND ENVIRONMENT, 2007, 42 (07) :2568-2572
[10]   Strength development of concrete with rice-husk ash [J].
de Sensale, GR .
CEMENT & CONCRETE COMPOSITES, 2006, 28 (02) :158-160