Tellurium Doping and the Structural, Electronic, and Optical Properties of NaYS2(1-x)Te2x Alloys

被引:20
作者
Azzouz, Lahcene [1 ,2 ]
Halit, Mohamed [1 ]
Charifi, Zoulikha [3 ,4 ]
Matta, Cherif F. [2 ,5 ]
机构
[1] Univ Amar Telidji, Lab Phys Mat, BP 37G, Laghouat 03000, Algeria
[2] Mt St Vincent Univ, Dept Chem & Phys, Halifax, NS B3M 2J6, Canada
[3] Univ Msila, Fac Sci, Dept Phys, Msila 28000, Algeria
[4] Univ Msila, Lab Phys & Chim Mat, Msila 28000, Algeria
[5] Dalhousie Univ, Dept Chem, Halifax, NS B3H 4J3, Canada
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
EXCITON BINDING-ENERGY; EFFECTIVE MASSES; RB; SEMICONDUCTORS; LUMINESCENCE; ABSORPTION; PARAMETERS; EMISSION; EXCHANGE; SULFIDE;
D O I
10.1021/acsomega.9b01330
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
New ternary and quaternary NaYS2(1-x)Te2x alloys (with x = 0, 0.33, 0.67, and 1) are proposed as promising candidates for photon energy conversion in photovoltaic applications. The effects of Te doping on crystal, spectral, and optical properties are studied within the framework of periodic density functional theory. Increasing Te content decreases the band gap (E-g) considerably (from 3.96 (x = 0) to 1.62 eV (x = 0.67)) and fits a quadratic model (E-g(x) = 3.96-6.78x + 4.70x(2), (r(2) = 0.96, n = 4)). The band gap of 1.62 eV makes the NaYS0.67Te1.33 alloy ideal for photovoltaic applications for their ability to absorb in the visible segment of the sunlight spectrum. The calculated exciton binding energies are 9.78 meV for NaYS1.33Te0.67 and 6.06 meV for NaYS0.67Te1.33. These values of the order of the thermal energy at room temperature suggest an easily dissociable hole-electron pair. The family of NaYS2(1-x)Te2x alloys are, therefore, promising candidates for visible photocatalytic devices and worthy of further experimental and theoretical investigations.
引用
收藏
页码:11320 / 11331
页数:12
相关论文
共 69 条
[1]  
Adachi S., 1994, GaAs and Related Materials: Bulk Semiconducting and Superlattice Properties
[2]   Toward reliable density functional methods without adjustable parameters: The PBE0 model [J].
Adamo, C ;
Barone, V .
JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (13) :6158-6170
[3]   Study of electronic, magnetic and optical properties of KMS2 (M = Nd, Ho, Er and Lu): first principle calculations [J].
Ahmed, Nisar ;
Nisar, Jawad ;
Kouser, R. ;
Nabi, Azeem G. ;
Mukhtar, S. ;
Saeed, Yasir ;
Nasim, M. H. .
MATERIALS RESEARCH EXPRESS, 2017, 4 (06)
[4]  
Aiken DJ, 2000, PROG PHOTOVOLTAICS, V8, P563, DOI 10.1002/1099-159X(200011/12)8:6<563::AID-PIP327>3.0.CO
[5]  
2-8
[6]   ETUDE CRISTALLOGRAPHIQUE DE SULFURES DE TERRES RARES ET DE SODIUM [J].
BALLESTRACCI, R ;
BERTAUT, EF .
BULLETIN DE LA SOCIETE FRANCAISE MINERALOGIE ET DE CRISTALLOGRAPHIE, 1964, 87 (04) :512-+
[7]   Structural, elastic, electronic, chemical bonding and optical properties of Cu-based oxides ACuO (A = Li, Na, K and Rb): An ab initio study [J].
Bouhemadou, A. ;
Boudrifa, O. ;
Guechi, N. ;
Khenata, R. ;
Al-Douri, Y. ;
Ugur, S. ;
Ghebouli, B. ;
Bin-Omran, S. .
COMPUTATIONAL MATERIALS SCIENCE, 2014, 81 :561-574
[8]   Range-separated hybrid exchange-correlation functional analyses of anatase TiO2 doped with W, N, S, W/N, or W/S [J].
Celik, Veysel ;
Mete, Ersen .
PHYSICAL REVIEW B, 2012, 86 (20)
[9]   Band structures and nitrogen doping effects in zinc titanate photocatalysts [J].
Conesa, Jose C. .
CATALYSIS TODAY, 2013, 208 :11-18
[10]   NEW ROUTES TO ALKALI-METAL-RARE-EARTH-METAL SULFIDES [J].
COTTER, JP ;
FITZMAURICE, JC ;
PARKIN, IP .
JOURNAL OF MATERIALS CHEMISTRY, 1994, 4 (10) :1603-1609