Model-based Optimal Sabatier Reactor Design for Power-to-Gas Applications

被引:42
作者
El Sibai, Ali [1 ]
Struckmann, Liisa K. Rihko [2 ]
Sundmacher, Kai [1 ,2 ]
机构
[1] Otto von Guericke Univ, Proc Syst Engn, Univ Pl 2, D-39106 Magdeburg, Germany
[2] Max Planck Inst Dynam Complex Tech Syst, Proc Syst Engn, Sandtorstr 1, D-39106 Magdeburg, Germany
关键词
carbon dioxide; dynamic optimization; energy conversion; methanation; reactor design;
D O I
10.1002/ente.201600600
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The existing infrastructure for natural gas storage and transport made the Sabatier process an attractive step within the power-to-gas process chain for intermittent renewable energy storage. A model-based optimal design for the methanation of carbon dioxide with hydrogen to methane under process-wide constraints is presented. After inclusion of the downstream units into the analysis, the product methane fulfils the specifications for the natural gas grid. The optimization goal was to maximize the space-time yield by applying the systematic flux-oriented elementary process function methodol-ogy. The optimum temperature and concentration profiles along the reaction coordinate were first determined, after which they were approximated using two reaction configurations: 1) a hydrophilic membrane reactor and 2) a cascade of polytropic reactors with interstage condensation. The results show that an optimized cascade of three polytropic fixed bed reactors (e.g., optimum temperature profile) and two intermediate condensation steps is the best technical approximation for maximizing the space-time yield.
引用
收藏
页码:911 / 921
页数:11
相关论文
共 36 条
[1]  
Appl M., 2011, ULLMANNS ENCY IND CH, P139
[2]   CO2 methanation over heterogeneous catalysts: recent progress and future prospects [J].
Aziz, M. A. A. ;
Jalil, A. A. ;
Triwahyono, S. ;
Ahmad, A. .
GREEN CHEMISTRY, 2015, 17 (05) :2647-2663
[3]  
Biegler L. T., 1997, SYSTEMATIC METHODS C
[4]   Methanation of carbon dioxide by hydrogen reduction using the Sabatier process in microchannel reactors [J].
Brooks, Kriston P. ;
Hu, Jianli ;
Zhu, Huayang ;
Kee, Robert J. .
CHEMICAL ENGINEERING SCIENCE, 2007, 62 (04) :1161-1170
[5]   Separations using zeolite membranes [J].
Coronas, J ;
Santamaría, J .
SEPARATION AND PURIFICATION METHODS, 1999, 28 (02) :127-177
[6]   Economic assessment of a power-to-substitute-natural-gas process including high-temperature steam electrolysis [J].
De Saint Jean, Myriam ;
Baurens, Pierre ;
Bouallou, Chakib ;
Couturier, Karine .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (20) :6487-6500
[7]   Parametric study of an efficient renewable power-to-substitute-natural-gas process including high-temperature steam electrolysis [J].
De St Jean, Myriam ;
Baurens, Pierre ;
Bouallou, Chakib .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (30) :17024-17039
[8]  
Eigenberger G., 2008, HDB HETEROGENEOUS CA, V8, P2075
[9]  
El Sibai A, 2015, COMPUT-AIDED CHEM EN, V37, P1157
[10]   Henry's constants and vapor-liquid distribution constants for gaseous solutes in H2O and D2O at high temperatures [J].
Fernández-Prini, R ;
Alvarez, JL ;
Harvey, AH .
JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 2003, 32 (02) :903-916