On the conjugacy relation in ergodic theory

被引:10
作者
Foreman, Matthew D. [1 ]
Rudolph, Daniel J.
Weiss, Benjamin
机构
[1] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
[2] Colorado State Univ, Dept Math, Ft Collins, CO 80523 USA
[3] Hebrew Univ Jerusalem, Inst Math, IL-91904 Jerusalem, Israel
关键词
D O I
10.1016/j.crma.2006.09.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The set of pairs of transformations on the interval [0, 1] can be equipped with a standard Borel structure. We prove that the relation of conjugacy is not a Borel subset of this space, in fact it is complete analytic. Moreover, our construction proves that the two sets, {T: T is conjugate of T-1}, and {T: the centralizer of T is non-trivial} are complete analytic sets.
引用
收藏
页码:653 / 656
页数:4
相关论文
共 5 条
[1]  
[Anonymous], 1974, YALE MATH MONOGRAPHS
[2]   BOREL STRUCTURES AND INVARIANTS FOR MEASURABLE TRANSFORMATIONS [J].
FELDMAN, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 46 (03) :383-394
[3]  
Foreman M, 2004, J EUR MATH SOC, V6, P277
[4]  
HALMOS PR, 1956, ERGODIC THEORY
[5]   On invariants for measure preserving transformations [J].
Hjorth, G .
FUNDAMENTA MATHEMATICAE, 2001, 169 (01) :51-84