User Intention Prediction Method Based on Hybrid Feature Selection and Stacking Multi-model Fusion

被引:6
|
作者
Xu, Zhongxian [1 ]
Sun, Yuejia [1 ]
Guo, Ye [1 ]
Zhou, Zhihong [1 ]
Cheng, Yinchao [2 ]
Lin, Lin [1 ]
机构
[1] China Mobile Res Inst, Dept User & Market Res, Beijing, Peoples R China
[2] China Mobile Res Inst, Dept Tech Middle Platform Support, Beijing, Peoples R China
来源
2022 IEEE 5TH INTERNATIONAL CONFERENCE ON ELECTRONICS AND COMMUNICATION ENGINEERING, ICECE | 2022年
关键词
hybrid feature selection; multi-model fusion; intention prediction; Stacking; data mining;
D O I
10.1109/ICECE56287.2022.10048613
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The domestic communication business market tends to be saturated, and the market competition of telecom operators is becoming increasingly fierce. How to mine and predict customers' potential business needs and consumption behavior intentions from users' massive data based on big data is crucial to the fine operation and marketing strategy of telecom operators' existing customers. Due to the complexity of operator network data and the diversity of user behavior, there are many limitations and challenges in the research of user value feature mining, accuracy and generalization of prediction models. In order to solve the above problems, this paper provides a user intention prediction method based on the fusion of mixed feature selection and stacking model. First, based on the hybrid feature selection model of Filter mode and weighted Random Forest, the influencing factors are mined, and the best feature subset is screened; The stacking model fusion framework is proposed, and the FWRF_Stacking hybrid ensemble model based on four classifiers is constructed according to the combination strategy of the model diversity evaluation method and the weighted average method. Finally, it is verified on the real data set of operators. The experimental results show that the prediction model proposed in this paper is superior to other baseline models in multiple performance indicators, and has better effect and applicability for the prediction of telecom customers' business consumption intention.
引用
收藏
页码:220 / 226
页数:7
相关论文
共 50 条
  • [1] Multi-class financial distress prediction based on hybrid feature selection and improved stacking ensemble model
    Chen, Xiaofang
    Liu, Jiaming
    Wu, Chong
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 282
  • [2] Navigation Trajectory Prediction Method of Inland Ships Based on Multi-model Fusion
    Zhang Y.
    Gao S.
    He W.
    Cai J.
    Zhongguo Jixie Gongcheng/China Mechanical Engineering, 2022, 33 (10): : 1142 - 1152
  • [3] Prediction of loan default based on multi-model fusion
    Li, Xingyun
    Ergu, Daji
    Zhang, Di
    Qiu, Dafeng
    Cai, Ying
    Ma, Bo
    8TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT (ITQM 2020 & 2021): DEVELOPING GLOBAL DIGITAL ECONOMY AFTER COVID-19, 2022, 199 : 757 - 764
  • [4] Multi-Model Fusion Short-Term Load Forecasting Based on Random Forest Feature Selection and Hybrid Neural Network
    Xuan, Yi
    Si, Weiguo
    Zhu, Jiong
    Sun, Zhiqing
    Zhao, Jian
    Xu, Mingjie
    Xu, Shouliang
    IEEE ACCESS, 2021, 9 : 69002 - 69009
  • [5] Prediction of Pedestrian Intention and Trajectory Based on Multi-feature Fusion
    Cao H.-T.
    Shi H.-J.
    Song X.-L.
    Li M.-J.
    Dai H.-L.
    Huang Z.
    Zhongguo Gonglu Xuebao/China Journal of Highway and Transport, 2022, 35 (10): : 308 - 318
  • [6] MULTI-MODEL FUSION PHOTOVOLTAIC POWER GENERATION PREDICTION METHOD BASED ON REINFORCEMENT LEARNING
    Wang J.
    Fu J.
    Chen B.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2024, 45 (06): : 382 - 388
  • [7] Research on Flight delay Prediction based on Multi-Model Fusion
    Mang, Chen
    Chen, Yunli
    PROCEEDINGS OF 2020 IEEE 5TH INFORMATION TECHNOLOGY AND MECHATRONICS ENGINEERING CONFERENCE (ITOEC 2020), 2020, : 725 - 730
  • [8] Research on Photovoltaic Power Prediction Based on Multi-model Fusion
    Chen, Jiaqi
    Gao, Qiang
    Ji, Yuehui
    Xu, Zhao
    Liu, Junjie
    PROCEEDINGS OF THE 4TH INTERNATIONAL SYMPOSIUM ON NEW ENERGY AND ELECTRICAL TECHNOLOGY, ISNEET 2023, 2024, 1255 : 59 - 67
  • [9] Prediction of CO2 Solubility in Ionic Liquids Based on Multi-Model Fusion Method
    Xia, Luyue
    Wang, Jiachen
    Liu, Shanshan
    Li, Zhuo
    Pan, Haitian
    PROCESSES, 2019, 7 (05)
  • [10] a CNN-Attention-LightGBM Arrester Defect Prediction Method based on Multi-model Fusion
    Sheng, Jizheng
    Liu, Xinmin
    Li, Bing
    Cui, Yang
    Zhu, Lei
    Zhang, Xiuping
    2023 6TH INTERNATIONAL CONFERENCE ON ELECTRONICS AND ELECTRICAL ENGINEERING TECHNOLOGY, EEET 2023, 2023, : 122 - 127