Predictive Modeling for Public Health: Preventing Childhood Lead Poisoning
被引:24
|
作者:
Potash, Eric
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chicago, Chicago, IL 60637 USAUniv Chicago, Chicago, IL 60637 USA
Potash, Eric
[1
]
Brew, Joe
论文数: 0引用数: 0
h-index: 0
机构:
Univ Florida, Gainesville, FL 32611 USAUniv Chicago, Chicago, IL 60637 USA
Brew, Joe
[2
]
Loewi, Alexander
论文数: 0引用数: 0
h-index: 0
机构:
Carnegie Mellon Univ, Pittsburgh, PA 15213 USAUniv Chicago, Chicago, IL 60637 USA
Loewi, Alexander
[3
]
Majumdar, Subhabrata
论文数: 0引用数: 0
h-index: 0
机构:
Univ Minnesota, Minneapolis, MN 55455 USAUniv Chicago, Chicago, IL 60637 USA
Majumdar, Subhabrata
[4
]
Reece, Andrew
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Univ, Cambridge, MA 02138 USAUniv Chicago, Chicago, IL 60637 USA
Reece, Andrew
[5
]
Walsh, Joe
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chicago, Chicago, IL 60637 USAUniv Chicago, Chicago, IL 60637 USA
Walsh, Joe
[1
]
Rozier, Eric
论文数: 0引用数: 0
h-index: 0
机构:
Univ Cincinnati, Cincinnati, OH 45221 USAUniv Chicago, Chicago, IL 60637 USA
Rozier, Eric
[6
]
Jorgensen, Emile
论文数: 0引用数: 0
h-index: 0
机构:
Chicago Dept Publ Hlth, Chicago, IL USAUniv Chicago, Chicago, IL 60637 USA
Jorgensen, Emile
[7
]
Mansour, Raed
论文数: 0引用数: 0
h-index: 0
机构:
Chicago Dept Publ Hlth, Chicago, IL USAUniv Chicago, Chicago, IL 60637 USA
Mansour, Raed
[7
]
Ghani, Rayid
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chicago, Chicago, IL 60637 USAUniv Chicago, Chicago, IL 60637 USA
Ghani, Rayid
[1
]
机构:
[1] Univ Chicago, Chicago, IL 60637 USA
[2] Univ Florida, Gainesville, FL 32611 USA
[3] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
[4] Univ Minnesota, Minneapolis, MN 55455 USA
[5] Harvard Univ, Cambridge, MA 02138 USA
[6] Univ Cincinnati, Cincinnati, OH 45221 USA
[7] Chicago Dept Publ Hlth, Chicago, IL USA
来源:
KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING
|
2015年
关键词:
CHILDREN;
BLOOD;
D O I:
10.1145/2783258.2788629
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
Lead poisoning is a major public health problem that affects hundreds of thousands of children in the United States every year. A common approach to identifying lead hazards is to test all children for elevated blood lead levels and then investigate and remediate the homes of children with elevated tests. This can prevent exposure to lead of future residents, but only after a child has been poisoned. This paper describes joint work with the Chicago Department of Public Health (CDPH) in which we build a model that predicts the risk of a child to being poisoned so that an intervention can take place before that happens. Using two decades of blood lead level tests, home lead inspections, property value assessments, and census data, our model allows inspectors to prioritize houses on an intractably long list of potential hazards and identify children who are at the highest risk. This work has been described by CDPH as pioneering in the use of machine learning and predictive analytics in public health and has the potential to have a significant impact on both health and economic outcomes for communities across the US.