sgRNA Scorer 2.0: A Species-Independent Model To Predict CRISPR/Cas9 Activity

被引:160
|
作者
Chari, Raj [1 ]
Yeo, Nan Cher [1 ,2 ]
Chavez, Alejandro [1 ,2 ]
Church, George M. [1 ,2 ]
机构
[1] Harvard Med Sch, Dept Genet, Boston, MA 02115 USA
[2] Harvard Univ, Wyss Inst Biol Inspired Engn, Boston, MA 02115 USA
来源
ACS SYNTHETIC BIOLOGY | 2017年 / 6卷 / 05期
关键词
CRISPR; Cas9; sgRNA activity prediction; sgRNA scorer; genome engineering; STAPHYLOCOCCUS-AUREUS CAS9; OFF-TARGET; IN-VIVO; GENOME; CRISPR-CAS9; GENES; IDENTIFICATION; DESIGN; TOOL;
D O I
10.1021/acssynbio.6b00343
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
It has been possible to create tools to predict single guide RNA (sgRNA) activity in the CRISPR/Cas9 system derived from Streptococcus pyogenes due to the large amount of data that has been generated in sgRNA library screens. However, with the discovery of additional CRISPR systems from different bacteria, which show potent activity in eukaryotic cells, the approach of generating large data sets for each of these systems to predict their activity is not tractable. Here, we present a new guide RNA tool that can predict sgRNA activity across multiple CRISPR systems. In addition to predicting activity for Cas9 from S. pyogenes and Streptococcus thermophilus CRISPR1, we experimentally demonstrate that our algorithm can predict activity for Cas9 from Staphylococcus aureus and S. thermophilus CRISPR3. We also have made available a new version of our software, sgRNA Scorer 2.0, which will allow users to identify sgRNA sites for any PAM sequence of interest.
引用
收藏
页码:902 / 904
页数:3
相关论文
共 50 条
  • [1] Review of CRISPR/Cas9 sgRNA Design Tools
    Cui, Yingbo
    Xu, Jiaming
    Cheng, Minxia
    Liao, Xiangke
    Peng, Shaoliang
    INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES, 2018, 10 (02) : 455 - 465
  • [2] Review of CRISPR/Cas9 sgRNA Design Tools
    Yingbo Cui
    Jiaming Xu
    Minxia Cheng
    Xiangke Liao
    Shaoliang Peng
    Interdisciplinary Sciences: Computational Life Sciences, 2018, 10 : 455 - 465
  • [3] Mathematical and computational analysis of CRISPR Cas9 sgRNA off-target homologies
    Zhou, Michael
    Li, Daisy
    Manthey, Josehph
    Lioutikova, Ekaterina
    Zhou, Hong
    Huan, Xiaoli
    2016 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2016, : 449 - 454
  • [4] Mathematical and computational analysis of CRISPR Cas9 sgRNA off-target homologies
    Zhou, Michael
    Li, Daisy
    Huan, Xiaoli
    Manthey, Joseph
    Lioutikova, Ekaterina
    Zhou, Hong
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2017, 10 (06)
  • [5] An Optimized CRISPR/Cas9 Adenovirus Vector (AdZ-CRISPR) for High-Throughput Cloning of sgRNA, Using Enhanced sgRNA and Cas9 Variants
    Statkute, Evelina
    Wang, Eddie C. Y.
    Stanton, Richard J.
    HUMAN GENE THERAPY, 2022, 33 (17-18) : 990 - 1001
  • [6] Discovery and characterization of sgRNA-sequence-independent DNA cleavage from CRISPR/Cas9 in mouse embryos
    Yang, Liyun
    Chen, Lijiao
    Zheng, Yang
    Deng, Li
    Bai, Raoxian
    Zhang, Ting
    Wang, Zhengbo
    Li, Shangang
    GENOMICS, 2024, 116 (03)
  • [7] Examination of CRISPR/Cas9 design tools and the effect of target site accessibility on Cas9 activity
    Lee, Ciaran M.
    Davis, Timothy H.
    Bao, Gang
    EXPERIMENTAL PHYSIOLOGY, 2018, 103 (04) : 456 - 460
  • [8] CRISPRLearner: A Deep Learning-Based System to Predict CRISPR/Cas9 sgRNA On-Target Cleavage Efficiency
    Dimauro, Giovanni
    Colagrande, Pierpasquale
    Carlucci, Roberto
    Ventura, Mario
    Bevilacqua, Vitoantonio
    Caivano, Danilo
    ELECTRONICS, 2019, 8 (12)
  • [9] A systematic mapping study on machine learning techniques for the prediction of CRISPR/Cas9 sgRNA target cleavage
    Dimauro, Giovanni
    Barletta, Vita S.
    Catacchio, Claudia R.
    Colizzi, Lucio
    Maglietta, Rosalia
    Ventura, Mario
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2022, 20 : 5813 - 5823
  • [10] C-RNNCrispr: Prediction of CRISPR/Cas9 sgRNA activity using convolutional and recurrent neural networks
    Zhang, Guishan
    Dai, Zhiming
    Dai, Xianhua
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2020, 18 : 344 - 354