Some integral inequalities of Gruss type

被引:0
|
作者
Dragomir, SS [1 ]
机构
[1] Victoria Univ Technol, Sch Commun & Informat, Melebourne City MC, Vic 8001, Australia
关键词
integral inequalities; Gruss inequality Chebyshev inequality;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Some classical and new integral inequalities of Gruss type are presented.
引用
收藏
页码:397 / 415
页数:19
相关论文
共 50 条
  • [1] Some new Gruss type quantum integral inequalities on finite intervals
    Liu, Zhen
    Yang, Wengui
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (05): : 3362 - 3375
  • [2] Some new fractional q-integral Gruss-type inequalities and other inequalities
    Zhu, Chaowu
    Yang, Wengui
    Zhao, Qingbo
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
  • [3] Certain Gruss type inequalities involving the generalized fractional integral operator
    Wang, Guotao
    Agarwal, Praveen
    Chand, Mehar
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [4] SOME INTEGRAL INEQUALITIES OF THE VOLTERRA TYPE
    Chou, Chyng Nan
    Yang, Gou-Sheng
    TAMKANG JOURNAL OF MATHEMATICS, 2005, 36 (02): : 167 - 178
  • [5] CERTAIN NEW GRUSS TYPE INEQUALITIES INVOLVING SAIGO FRACTIONAL q-INTEGRAL OPERATOR
    Wang, Guotao
    Agarwal, Praveen
    Baleanu, Dumitru
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2015, 19 (05) : 862 - 873
  • [6] On sharpness of some integral inequalities and an integral equation of volterra type
    Pecaric, J
    Peric, I
    Persson, LE
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2002, 5 (04): : 659 - 670
  • [7] ON GRUSS TYPE INEQUALITY FOR A HYPERGEOMETRIC FRACTIONAL INTEGRAL
    Kalla, Shyam L.
    Rao, Alka
    MATEMATICHE, 2011, 66 (01): : 57 - 64
  • [8] On weighted Ostrowski type, Trapezoid type, Gruss type and Ostrowski-Gruss like inequalities on time scales
    Liu, Wenjun
    Tuna, Adnan
    Jiang, Yong
    APPLICABLE ANALYSIS, 2014, 93 (03) : 551 - 571
  • [9] Gruss type inequalities via generalized fractional operators
    Butt, Saad Ihsan
    Akdemir, Ahmet Ocak
    Nadeem, Muhammad
    Raza, Malik Ali
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (17) : 12559 - 12574
  • [10] Some trapezoid type inequalities for generalized fractional integral
    Ertugral, Fatma
    Sarikaya, Mehmet Zeki
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (01): : 289 - 295