Some General Integral Operator Inequalities Associated with φ-Quasiconvex Functions

被引:3
作者
Kwun, Young Chel [1 ]
Zahra, Moquddsa [2 ]
Farid, Ghulam [3 ]
Agarwal, Praveen [4 ]
Kang, Shin Min [5 ]
机构
[1] Dong A Univ, Dept Math, Busan 49315, South Korea
[2] Univ Wah, Dept Math, Wah Cantt, Pakistan
[3] COMSATS Univ Islamabad, Dept Math, Attock Campus, Islamabad, Pakistan
[4] Anand Int Coll Engn, Near Kanota Agra Rd, Jaipur 303012, Rajasthan, India
[5] China Med Univ, Ctr Gen Educ, Taichung 40402, Taiwan
关键词
HERMITE-HADAMARD;
D O I
10.1155/2021/6696602
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper deals with generalized integral operator inequalities which are established by using phi-quasiconvex functions. Bounds of an integral operator are established which have connections with different kinds of known fractional integral operators. All the results are deducible for quasiconvex functions. Some fractional integral inequalities are deduced.
引用
收藏
页数:11
相关论文
共 29 条
[1]  
Adilov G, 2012, HACET J MATH STAT, V41, P723
[2]   B-1-CONVEX SETS AND B-1-MEASURABLE MAPS [J].
Adilov, G. ;
Yesilce, I. .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2012, 33 (02) :131-141
[3]  
Anastassiou GA, 2013, FACTA UNIV-SER MATH, V28, P107
[4]   A FURTHER EXTENSION OF MITTAG-LEFFLER FUNCTION [J].
Andric, Maja ;
Farid, Ghulam ;
Pecaric, Josip .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (05) :1377-1395
[5]  
[Anonymous], 2019, Open J. Math. Sci
[6]   Properties of h-convex functions related to the Hermite-Hadamard-Fejer inequalities [J].
Bombardelli, Mea ;
Varosanec, Sanja .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (09) :1869-1877
[7]   B-convexity [J].
Briec, W ;
Horvath, C .
OPTIMIZATION, 2004, 53 (02) :103-127
[8]   Hermite-Hadamard and Hermite-Hadamard-Fejer type inequalities for generalized fractional integrals [J].
Chen, Hua ;
Katugampola, Udita N. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 446 (02) :1274-1291
[9]   Quasi-convex functions and Hadamard's inequality [J].
Dragomir, SS ;
Pearce, CEM .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1998, 57 (03) :377-385
[10]  
Farid G., 2021, J COMPUTATIONAL ANAL, V29, P454