Adaptive defect-correction methods for viscous incompressible flow problems

被引:45
作者
Ervin, VJ [1 ]
Layton, WJ [1 ]
Maubach, JM [1 ]
机构
[1] Univ Pittsburgh, Dept Math & Stat, Inst Computat Math & Applicat, Pittsburgh, PA 15260 USA
关键词
defect correction; Navier-Stokes; finite element;
D O I
10.1137/S0036142997318164
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a defect correction method (DCM) which has been used extensively in applications where solutions have sharp transition regions, such as high Reynolds number fluid ow problems. A reliable a posteriori error estimator is derived for a defect correction method. The estimator is further studied for two examples: (a) the case of a linear-diffusion, nonlinear convection-reaction equation, and (b) the nonlinear Navier Stokes equations. Numerical experiments are provided which illustrate the utility of the resulting adaptive defect correction method for high Reynolds number, incompressible, viscous flow problems.
引用
收藏
页码:1165 / 1185
页数:21
相关论文
共 45 条
[1]   A UNIFIED APPROACH TO A POSTERIORI ERROR ESTIMATION USING ELEMENT RESIDUAL METHODS [J].
AINSWORTH, M ;
ODEN, JT .
NUMERISCHE MATHEMATIK, 1993, 65 (01) :23-50
[2]  
[Anonymous], RAIRO RAN R
[3]  
Arnold D., 1984, CALCOLO, V21, P337, DOI 10.1007/bf02576171
[4]   A RESTARTED VERSION OF A GENERALIZED PRECONDITIONED CONJUGATE-GRADIENT METHOD [J].
AXELSSON, O .
COMMUNICATIONS IN APPLIED NUMERICAL METHODS, 1988, 4 (04) :521-530
[6]  
Axelsson O., 1990, RAIRO-MATH MODEL NUM, V24, P423
[7]  
AXELSSON O, 1991, LECT NOTES MATH, V1457, P174
[8]   ERROR ESTIMATES FOR ADAPTIVE FINITE-ELEMENT COMPUTATIONS [J].
BABUSKA, I ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) :736-754
[9]  
BABUSKA I, 1981, BN968 U MAR
[10]  
BANK RE, 1985, MATH COMPUT, V44, P283, DOI 10.1090/S0025-5718-1985-0777265-X