Synchronization of electrically coupled pairs of inhibitory interneurons in neocortex

被引:132
作者
Mancilla, Jaime G.
Lewis, Timothy J.
Pinto, David J.
Rinzel, John
Connors, Barry W.
机构
[1] Brown Univ, Dept Neurosci, Div Biol & Med, Providence, RI 02912 USA
[2] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
[3] NYU, Ctr Neural Sci, New York, NY 10003 USA
[4] NYU, Courant Inst Math Sci, New York, NY 10003 USA
关键词
gap junctions; whisker barrel; oscillations; synchrony; FS cell; LTS cell; phase-response curves;
D O I
10.1523/JNEUROSCI.2715-06.2007
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We performed a systematic analysis of phase locking in pairs of electrically coupled neocortical fast- spiking ( FS) and low- thresholdspiking ( LTS) interneurons and in a conductance- based model of a pair of FS cells. Phase - response curves ( PRCs) were obtained for real interneurons and the model cells. We used PRCs and the theory of weakly coupled oscillators to make predictions about phase- locking characteristics of cell pairs. Phase locking and the robustness of phase- locked states to differences in intrinsic frequencies of cells were directly examined by driving interneuron pairs through a wide range of firing frequencies. Calculations using PRCs accurately predicted that electrical coupling robustly synchronized the firing of interneurons over all frequencies studied ( FS, similar to 25 - 80 Hz;LTS, similar to 10 - 30 Hz). The synchronizing ability of electrical coupling and the robustness of the phaselocked states were directly dependent on the strength of coupling but not on firing frequency. The FS cell model also predicted the existence of stable antiphase firing at frequencies below similar to 30 Hz, but no evidence for stable antiphase firing was found using the experimentally determined PRCs or in direct measures of phase locking in pairs of interneurons. Despite significant differences in biophysical properties of FS and LTS cells, their phase- locking behavior was remarkably similar. The wide spikes and shallow action potential afterhyperpolarizations of interneurons, compared with the model, prohibited antiphase behavior. Electrical coupling between cortical interneurons of the same type maintained robust synchronous firing of cell pairs for up to similar to 10% heterogeneity in their intrinsic frequencies.
引用
收藏
页码:2058 / 2073
页数:16
相关论文
共 50 条
  • [41] Synchronization of Locally Coupled Neural Oscillators
    Valentin Dragoi
    Ioan Grosu
    Neural Processing Letters, 1998, 7 : 199 - 210
  • [42] Synaptogenesis of Electrical and GABAergic Synapses of Fast-Spiking Inhibitory Neurons in the Neocortex
    Pangratz-Fuehrer, Susanne
    Hestrin, Shaul
    JOURNAL OF NEUROSCIENCE, 2011, 31 (30) : 10767 - 10775
  • [43] Periventricular nodular heterotopia is coupled with the neocortex during resting and task states
    Gao, Yayue
    Chen, Guanpeng
    Teng, Pengfei
    Zhang, Xin
    Fang, Fang
    Englot, Dario J.
    Luan, Guoming
    Wang, Xiongfei
    Wang, Qian
    CEREBRAL CORTEX, 2023, 33 (07) : 3467 - 3477
  • [44] The Current Status of Somatostatin-Interneurons in Inhibitory Control of Brain Function and Plasticity
    Scheyltjens, Isabelle
    Arckens, Lutgarde
    NEURAL PLASTICITY, 2016, 2016
  • [45] Synchronization of interacted spiking neuronal networks with inhibitory coupling
    Andreev, Andrey, V
    Maksimenko, Vladimir A.
    Pisarchik, Alexander N.
    Hramov, Alexander E.
    CHAOS SOLITONS & FRACTALS, 2021, 146
  • [46] Impact of Adaptation Currents on Synchronization of Coupled Exponential Integrate-and-Fire Neurons
    Ladenbauer, Josef
    Augustin, Moritz
    Shiau, LieJune
    Obermayer, Klaus
    PLOS COMPUTATIONAL BIOLOGY, 2012, 8 (04)
  • [47] Interplay between subthreshold potentials and γ oscillations in mauthner cells' presynaptic inhibitory interneurons
    Marti, F.
    Korn, H.
    Faure, P.
    NEUROSCIENCE, 2008, 151 (04) : 983 - 994
  • [48] Network Properties of Electrically Coupled Bursting Pituitary Cells
    Fazli, Mehran
    Bertram, Richard
    FRONTIERS IN ENDOCRINOLOGY, 2022, 13
  • [49] On the behavior of a neural oscillator electrically coupled to a bistable element
    Kopell, N
    Abbott, LF
    Soto-Trevino, C
    PHYSICA D, 1998, 121 (3-4): : 367 - 395
  • [50] Estimating functional connectivity in an electrically coupled interneuron network
    Alcami, Pepe
    Marty, Alain
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (49) : E4798 - E4807