Fast and stable Bayesian image expansion using sparse edge priors

被引:4
作者
Raj, Ashish
Thakur, Kailash
机构
[1] Univ Calif San Francisco, Vet Adm Med Ctr, Ctr Imaging & Neurodegenerat Dis, San Francisco, CA 94121 USA
[2] Ind Res Ltd, Wellington, New Zealand
关键词
Bayesian estimation; edge-driven priors; image expansion; interpolation; subspace separation;
D O I
10.1109/TIP.2006.891339
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Smoothness assumptions in traditional image expansion cause blurring of edges and other high-frequency content that can be perceptually disturbing. Previous edge-preserving approaches are either ad hoc, statistically untenable, or computationally unattractive. We propose a new edge-driven stochastic prior image model and obtain the maximum a posteriori (MAP) estimate under this model. The MAP estimate is computationally challenging since it involves the inversion of very large matrices. An efficient algorithm is presented for expansion by dyadic factors. The technique exploits diagonalization of convolutional operators under the Fourier transform, and the sparsity of our edge prior, to speed up processing. Visual and quantitative comparison of our technique with other popular methods demonstrates its potential and promise.
引用
收藏
页码:1073 / 1084
页数:12
相关论文
共 50 条
[31]   Novel, fast, edge-directed image reconstruction algorithm using a substepping system for critical-dimension measurement of glass panels [J].
Doan, Nam-Thai ;
Moon, Jun-Hee ;
Kim, Tai-Wook ;
Pahk, Heui-Jae .
JOURNAL OF ELECTRONIC IMAGING, 2012, 21 (03)
[32]   SEGMENTED IMAGE INTERPOLATION USING EDGE DIRECTION AND TEXTURE SYNTHESIS [J].
Feng, Xiaojun ;
Allebach, Jan P. .
2008 15TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-5, 2008, :881-884
[33]   Image inpainting using cubic spline based edge reconstruction [J].
Voronin, V. V. ;
Marchuk, V. I. ;
Sherstobitov, A. I. ;
Egiazarian, K. O. .
IMAGE PROCESSING: ALGORITHMS AND SYSTEMS X AND PARALLEL PROCESSING FOR IMAGING APPLICATIONS II, 2012, 8295
[34]   Bayesian image interpolation using Markov random fields driven by visually relevant image features [J].
Colonnese, S. ;
Rinauro, S. ;
Scarano, G. .
SIGNAL PROCESSING-IMAGE COMMUNICATION, 2013, 28 (08) :967-983
[35]   Bayesian Estimation of the Multifractality Parameter for Image Texture Using a Whittle Approximation [J].
Combrexelle, Sebastien ;
Wendt, Herwig ;
Dobigeon, Nicolas ;
Tourneret, Jean-Yves ;
McLaughlin, Stephen ;
Abry, Patrice .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (08) :2540-2551
[36]   Bayesian Image Denoising Using an Anisotropic Markov Random Field Model [J].
Cui, Yanqiu ;
Zhang, Tao ;
Xu, Shuang ;
Li, Houjie .
MATERIALS, MECHATRONICS AND AUTOMATION, PTS 1-3, 2011, 467-469 :2018-2023
[37]   A Denoising Algorithm for CT Image Using Low-rank Sparse Coding [J].
Lei, Yang ;
Xu, Dong ;
Zhou, Zhengyang ;
Wang, Tonghe ;
Dong, Xue ;
Liu, Tian ;
Dhabaan, Anees ;
Curran, Walter J. ;
Yang, Xiaofeng .
MEDICAL IMAGING 2018: IMAGE PROCESSING, 2018, 10574
[38]   Image resolution enhancement using wavelet domain transformation and sparse signal representation [J].
Suryanarayana, Gunnam ;
Dhuli, Ravindra .
2ND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING, COMMUNICATION & CONVERGENCE, ICCC 2016, 2016, 92 :311-316
[39]   Sparse Representation Based Image Super-resolution Using Large Patches [J].
Liu Ning ;
Zhou Pan ;
Liu Wenju ;
Ke Dengfeng .
CHINESE JOURNAL OF ELECTRONICS, 2018, 27 (04) :813-820
[40]   Fast texture and structure image reconstruction using the perceptual hash [J].
Voronin, V. V. ;
Marchuk, V. I. ;
Frantc, V. A. ;
Egiazarian, K. O. .
IMAGE PROCESSING: ALGORITHMS AND SYSTEMS XI, 2013, 8655