Fast and stable Bayesian image expansion using sparse edge priors

被引:4
|
作者
Raj, Ashish
Thakur, Kailash
机构
[1] Univ Calif San Francisco, Vet Adm Med Ctr, Ctr Imaging & Neurodegenerat Dis, San Francisco, CA 94121 USA
[2] Ind Res Ltd, Wellington, New Zealand
关键词
Bayesian estimation; edge-driven priors; image expansion; interpolation; subspace separation;
D O I
10.1109/TIP.2006.891339
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Smoothness assumptions in traditional image expansion cause blurring of edges and other high-frequency content that can be perceptually disturbing. Previous edge-preserving approaches are either ad hoc, statistically untenable, or computationally unattractive. We propose a new edge-driven stochastic prior image model and obtain the maximum a posteriori (MAP) estimate under this model. The MAP estimate is computationally challenging since it involves the inversion of very large matrices. An efficient algorithm is presented for expansion by dyadic factors. The technique exploits diagonalization of convolutional operators under the Fourier transform, and the sparsity of our edge prior, to speed up processing. Visual and quantitative comparison of our technique with other popular methods demonstrates its potential and promise.
引用
收藏
页码:1073 / 1084
页数:12
相关论文
共 50 条
  • [1] Sparse image reconstruction using sparse priors
    Ting, Michael
    Raich, Raviv
    Hero, Alfred O., III
    2006 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP 2006, PROCEEDINGS, 2006, : 1261 - +
  • [2] Bayesian Blind Deconvolution with General Sparse Image Priors
    Babacan, S. Derin
    Molina, Rafael
    Do, Minh N.
    Katsaggelos, Aggelos K.
    COMPUTER VISION - ECCV 2012, PT VI, 2012, 7577 : 341 - 355
  • [3] Bayesian combination of sparse and non-sparse priors in image super resolution
    Villena, S.
    Vega, M.
    Babacan, S. D.
    Molina, R.
    Katsaggelos, A. K.
    DIGITAL SIGNAL PROCESSING, 2013, 23 (02) : 530 - 541
  • [4] Edge based Blind Single Image Deblurring with Sparse Priors
    Guemri, Khouloud
    Drira, Fadoua
    Walha, Rim
    Alimi, Adel M.
    LeBourgeois, Frank
    PROCEEDINGS OF THE 12TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISIGRAPP 2017), VOL 4, 2017, : 174 - 181
  • [5] Bayesian Sparse Estimation Using Double Lomax Priors
    Gu, Xiaojing
    Leung, Henry
    Gu, Xingsheng
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2013, 2013
  • [6] Sparse Bayesian Learning Using Adaptive LASSO Priors
    Bai Z.-L.
    Shi L.-M.
    Sun J.-W.
    Zidonghua Xuebao/Acta Automatica Sinica, 2022, 48 (05): : 1193 - 1208
  • [7] Fast Non-blind Image Deblurring with Sparse Priors
    Das, Rajshekhar
    Bajpai, Anurag
    Venkatesan, Shankar M.
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON COMPUTER VISION AND IMAGE PROCESSING, CVIP 2016, VOL 1, 2017, 459 : 629 - 641
  • [8] Variational Bayesian Pansharpening with Super-Gaussian Sparse Image Priors
    Perez-Bueno, Fernando
    Vega, Miguel
    Mateos, Javier
    Molina, Rafael
    Katsaggelos, Aggelos K.
    SENSORS, 2020, 20 (18) : 1 - 28
  • [9] Sparse Bayesian Learning of Filters for Efficient Image Expansion
    Kanemura, Atsunori
    Maeda, Shin-ichi
    Ishii, Shin
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010, 19 (06) : 1480 - 1490
  • [10] SPARSE BAYESIAN REGULARIZATION USING BERNOULLI-LAPLACIAN PRIORS
    Chaari, Lotfi
    Tourneret, Jean-Yves
    Batatia, Hadj
    2013 PROCEEDINGS OF THE 21ST EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2013,