Functional Fluorescence Microscopy Imaging: Quantitative Scanning-Free Confocal Fluorescence Microscopy for the Characterization of Fast Dynamic Processes in Live Cells

被引:26
作者
Krmpot, Aleksandar J. [1 ,2 ]
Nikolic, Stanko N. [1 ,2 ]
Oasa, Sho [1 ]
Papadopoulos, Dimitrios K. [3 ,10 ]
Vitali, Marco [4 ]
Oura, Makoto [5 ]
Mikuni, Shintaro [5 ]
Thyberg, Per [6 ]
Tisa, Simone [7 ]
Kinjo, Masataka [5 ]
Nilsson, Lennart [8 ]
Terenius, Lars [1 ]
Rigler, Rudolf [1 ,9 ]
Vukojevic, Vladana [1 ]
机构
[1] Karolinska Inst, CMM, Dept Clin Neurosci CNS, S-17176 Stockholm, Sweden
[2] Univ Belgrade, Inst Phys Belgrade, Belgrade 11080, Serbia
[3] Max Planck Inst Mol Cell Biol & Genet, D-01307 Dresden, Germany
[4] Sicoya GmbH, D-12489 Berlin, Germany
[5] Hokkaido Univ, Fac Adv Life Sci, Lab Mol Cell Dynam, Sapporo, Hokkaido 0010021, Japan
[6] Royal Inst Technol, Alballova Univ Ctr, Dept Appl Phys, S-10691 Stockholm, Sweden
[7] MPD, I-39100 Bolzano, Italy
[8] Karolinska Inst, Dept Biosci & Nutr, S-14183 Huddinge, Sweden
[9] Karolinska Inst, Dept Med Biochem & Biophys MBB, S-17177 Stockholm, Sweden
[10] Univ Edinburgh, Inst Genet & Mol Med, MRC Human Genet Unit, Edinburgh EH4 2XU, Midlothian, Scotland
基金
瑞典研究理事会;
关键词
CROSS-CORRELATION SPECTROSCOPY; GLUCOCORTICOID-RECEPTOR; PROTEIN DYNAMICS; DETECTORS; DIFFUSION; BINDING; ARRAY; ORGANIZATION; CALIBRATION; PHOTONS;
D O I
10.1021/acs.analchem.9b01813
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Functional fluorescence microscopy imaging (fFMI), a time-resolved (21 mu s/frame) confocal fluorescence microscopy imaging technique without scanning, is developed for quantitative characterization of fast reaction-transport processes in solution and in live cells. The method is based on massively parallel fluorescence correlation spectroscopy (FCS). Simultaneous excitation of fluorescent molecules in multiple spots in the focal plane is achieved using a diffractive optical element (DOE). Fluorescence from the DOE-generated 1024 illuminated spots is detected in a confocal arrangement by a matching matrix detector comprising 32 x 32 single-photon avalanche photodiodes (SPADs). Software for data acquisition and fast auto- and cross-correlation analysis by parallel signal processing using a graphic processing unit (GPU) allows temporal autocorrelation across all pixels in the image frame in 4 s and cross-correlation between first- and second-order neighbor pixels in 45 s. We present here this quantitative, time-resolved imaging method with single-molecule sensitivity and demonstrate its usefulness for mapping in live cell location-specific differences in the concentration and translational diffusion of molecules in different subcellular compartments. In particular, we show that molecules without a specific biological function, e.g., the enhanced green fluorescent protein (eGFP), exhibit uniform diffusion. In contrast, molecules that perform specialized biological functions and bind specifically to their molecular targets show location-specific differences in their concentration and diffusion, exemplified here for two transcription factor molecules, the glucocorticoid receptor (GR) before and after nuclear translocation and the Sex combs reduced (Scr) transcription factor in the salivary gland of Drosophila ex vivo.
引用
收藏
页码:11129 / 11137
页数:9
相关论文
共 64 条
  • [1] Spatiotemporal mapping of diffusion dynamics and organization in plasma membranes
    Bag, Nirmalya
    Ng, Xue Wen
    Sankaran, Jagadish
    Wohland, Thorsten
    [J]. METHODS AND APPLICATIONS IN FLUORESCENCE, 2016, 4 (03): : 1 - 15
  • [2] Calibration and Limits of Camera-Based Fluorescence Correlation Spectroscopy: A Supported Lipid Bilayer Study
    Bag, Nirmalya
    Sankaran, Jagadish
    Paul, Alexandra
    Kraut, Rachel S.
    Wohland, Thorsten
    [J]. CHEMPHYSCHEM, 2012, 13 (11) : 2784 - 2794
  • [3] Parallel flow measurements in microstructures by use of a multifocal 4 x 1 diffractive optical fan-out element
    Blom, H
    Johansson, M
    Gösch, M
    Sigmundsson, T
    Holm, J
    Hård, S
    Rigler, R
    [J]. APPLIED OPTICS, 2002, 41 (31) : 6614 - 6620
  • [4] Parallel fluorescence detection of single biomolecules in microarrays by a diffractive-optical-designed 2 x 2 fan-out element
    Blom, H
    Johansson, M
    Hedman, AS
    Lundberg, L
    Hanning, A
    Hård, S
    Rigler, R
    [J]. APPLIED OPTICS, 2002, 41 (16) : 3336 - 3342
  • [5] Physical basis of spindle self-organization
    Brugues, Jan
    Needleman, Daniel
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (52) : 18496 - 18500
  • [6] Buchholz J., 2015, EVALUATION SINGLE PH
  • [7] Widefield High Frame Rate Single-Photon SPAD Imagers for SPIM-FCS
    Buchholz, Jan
    Krieger, Jan
    Bruschini, Claudio
    Burri, Samuel
    Ardelean, Andrei
    Charbon, Edoardo
    Langowski, Joerg
    [J]. BIOPHYSICAL JOURNAL, 2018, 114 (10) : 2455 - 2464
  • [8] FPGA implementation of a 32x32 autocorrelator array for analysis of fast image series
    Buchholz, Jan
    Krieger, Jan Wolfgang
    Mocsar, Gabor
    Kreith, Balazs
    Charbon, Edoardo
    Vamosi, Gyorgy
    Kebschull, Udo
    Langowski, Joerg
    [J]. OPTICS EXPRESS, 2012, 20 (16): : 17767 - 17782
  • [9] Quantitative fluorescence imaging of protein diffusion and interaction in living cells
    Capoulade, Jeremie
    Wachsmuth, Malte
    Hufnagel, Lars
    Knop, Michael
    [J]. NATURE BIOTECHNOLOGY, 2011, 29 (09) : 835 - 842
  • [10] Electrons, Photons, and Force: Quantitative Single-Molecule Measurements from Physics to Biology
    Claridge, Shelley A.
    Schwartz, Jeffrey J.
    Weiss, Paul S.
    [J]. ACS NANO, 2011, 5 (02) : 693 - 729