Parallel Gradient-Based Local Search Accelerating Particle Swarm Optimization for Training Microwave Neural Network Models

被引:0
|
作者
Zhang, Jianan [1 ]
Ma, Kai [1 ]
Feng, Feng [1 ,2 ]
Zhang, Qijun [1 ,2 ]
机构
[1] Tianjin Univ, Sch Elect Informat Engn, Tianjin 300072, Peoples R China
[2] Carleton Univ, Dept Elect, Ottawa, ON K1S 5B6, Canada
来源
2015 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM (IMS) | 2015年
关键词
Parallel; particle swarm optimization; neural networks; microwave modeling; message passing interface (MPI);
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper presents a novel global optimization technique for training microwave neural network models. Unlike existing sequential hybrid algorithms, the proposed technique implements parallel gradient-based local search in particle swarm optimization (PSO). The whole swarm is divided into subswarms for multiple processors. The particle with the lowest error in the subswarm in each processor is chosen to do further local search using quasi-Newton method. This process is performed in all the subswarms in parallel using the message passing interface (MPI). The proposed technique increases the probability and speed of finding a global optimum. This technique is illustrated by two microwave modeling examples.
引用
收藏
页数:3
相关论文
共 50 条
  • [21] Comparative Analysis of Performances of an Improved Particle Swarm Optimization and a Traditional Particle Swarm Optimization for Training of Neural Network Architecture Space
    Comak, Emre
    Gunduz, Gurhan
    ACTA POLYTECHNICA HUNGARICA, 2025, 22 (05) : 7 - 30
  • [22] A self-adaptive gradient-based particle swarm optimization algorithm with dynamic population topology ?
    Zhang, Daren
    Ma, Gang
    Deng, Zhuoran
    Wang, Qiao
    Zhang, Guike
    Zhou, Wei
    APPLIED SOFT COMPUTING, 2022, 130
  • [23] Comparison of Particle Swarm Optimization and Backpropagation Algorithms for Training Feedforward Neural Network
    Mohammadi, Nasser
    Mirabedini, Seyed Javad
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2014, 12 (02): : 113 - 123
  • [24] A Hardware Implementation of Particle Swarm Optimization with a Control of Velocity for Training Neural Network
    Dang, Tuan Linh
    Hoshino, Yukinobu
    2015 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC 2015): BIG DATA ANALYTICS FOR HUMAN-CENTRIC SYSTEMS, 2015, : 1980 - 1985
  • [25] Neural Network Training by Hybrid Accelerated Cuckoo Particle Swarm Optimization Algorithm
    Nawi, Nazri Mohd
    Khan, Abdullah
    Rehman, M. Z.
    Aziz, Maslina Abdul
    Herawan, Tutut
    Abawajy, Jemal H.
    NEURAL INFORMATION PROCESSING (ICONIP 2014), PT II, 2014, 8835 : 237 - 244
  • [26] PREDICTION OF GROUNDWATER SALINIZATION USING PARTICLE SWARM OPTIMIZATION FOR NEURAL NETWORK TRAINING
    Neophytides, Stelios P.
    Mavrovouniotis, Michalis
    Panagiotou, Constantinos F.
    Eliades, Marinos
    Chekirbane, Anis
    Hadjimitsis, Diofantos
    IGARSS 2024-2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, IGARSS 2024, 2024, : 1927 - 1932
  • [27] Application of Local Search Particle Swarm Optimization Based on the Beetle Antennae Search Algorithm in Parameter Optimization
    Feng, Teng
    Deng, Shuwei
    Duan, Qianwen
    Mao, Yao
    ACTUATORS, 2024, 13 (07)
  • [28] A quantum based local search enhanced particle swarm optimization for binary spaces
    Ozsoydan, Fehmi Burcin
    PAMUKKALE UNIVERSITY JOURNAL OF ENGINEERING SCIENCES-PAMUKKALE UNIVERSITESI MUHENDISLIK BILIMLERI DERGISI, 2018, 24 (04): : 675 - 681
  • [29] A Neural Network Learning Algorithm Based on Hybrid Particle Swarm Optimization
    Luo Zaifei
    Guan Binglei
    Zhou Shiguan
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 3255 - 3259
  • [30] A new evolved artificial neural network based on particle swarm optimization
    Zhang, GY
    Sha, Y
    Zhang, J
    ISTM/2005: 6TH INTERNATIONAL SYMPOSIUM ON TEST AND MEASUREMENT, VOLS 1-9, CONFERENCE PROCEEDINGS, 2005, : 9347 - 9349