Gradient-Based Takagi-Sugeno Fuzzy Local Observer

被引:0
作者
Beyhan, Selami [1 ]
Dilmen, Erdem [2 ]
机构
[1] Pamukkale Univ, Dept Elect & Elect Engn, TR-20070 Kinikli, Denizli, Turkey
[2] Pamukkale Univ, Dept Mechatron Engn, TR-20020 Kinikli, Denizli, Turkey
来源
2015 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2015) | 2015年
关键词
IDENTIFICATION; REGULATORS; SYSTEMS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, a recently introduced nonlinear gradient-based observer [1] has been adopted for Takagi-Sugeno (TS) fuzzy systems. The designed observer is especially aimed to estimate the unmeasurable states of the TS fuzzy systems where the LMI solution is not feasible to find the observer gains. The estimation of gradient observer is evaluated based on the Levenberg-Marquardt direction where the local convergence property is guaranteed using Lyapunov function approach. The numerical simulations present accurate estimation results for TS fuzzy nonlinear systems including a comparison with the conventional Extended Kalman Filter (EKF) yielding acceptable results.
引用
收藏
页数:6
相关论文
共 28 条
[1]  
[Anonymous], IEEE INT C FUZZ SYST
[2]  
[Anonymous], 2007, P MED C CONTR AUT AT, DOI DOI 10.1109/MED.2007.4433910
[3]  
Bergsten P, 2001, 10TH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3, P700, DOI 10.1109/FUZZ.2001.1009051
[4]   Observers for Takagi-Sugeno fuzzy systems [J].
Bergsten, P ;
Palm, R ;
Driankov, D .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2002, 32 (01) :114-121
[5]  
Bergsten P, 2000, NINTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2000), VOLS 1 AND 2, P671, DOI 10.1109/FUZZY.2000.839073
[6]  
Beyhan S., 2012, THESIS EGE U
[7]   Runge-Kutta model-based nonlinear observer for synchronization and control of chaotic systems [J].
Beyhan, Selami .
ISA TRANSACTIONS, 2013, 52 (04) :501-509
[8]  
Beyhan Selami, 2013, CONTR C ASCC 2013 9, P1
[9]   EXTENDED LUENBERGER OBSERVER FOR NON-LINEAR MULTIVARIABLE SYSTEMS [J].
BIRK, J ;
ZEITZ, M .
INTERNATIONAL JOURNAL OF CONTROL, 1988, 47 (06) :1823-1836
[10]  
Butcher J.C., 1987, The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta and General Linear Methods