Hopf bifurcation of the generalized Lorenz canonical form

被引:12
作者
Li, Tiecheng [1 ]
Chen, Guanrong
Tang, Yun
Yang, Lijun
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] City Univ Hong Kong, Dept Elect Engn, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
chaos; Lorenz system; canonical form; Hopf bifurcation;
D O I
10.1007/s11071-006-9036-x
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Hopf bifurcation of a unified chaotic system - the generalized Lorenz canonical form (GLCF) - is investigated. Based on rigorous mathematical analysis and symbolic computations, some conditions for stability and direction of the periodic obits from the Hopf bifurcation are derived.
引用
收藏
页码:367 / 375
页数:9
相关论文
共 23 条
[1]   Symbolic computation of normal forms for semi-simple cases [J].
Bi, QS ;
Yu, P .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 102 (02) :195-220
[2]   On the generalized Lorenz canonical form [J].
Celikovsky, S ;
Chen, GR .
CHAOS SOLITONS & FRACTALS, 2005, 26 (05) :1271-1276
[3]   On a generalized Lorenz canonical form of chaotic systems [J].
Celikovsky, S ;
Chen, GR .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (08) :1789-1812
[4]  
Celikovsky S., 2002, P 15 TRIENN WORLD C
[5]   Complex dynamics in Chen's system [J].
Chang, Y ;
Chen, GR .
CHAOS SOLITONS & FRACTALS, 2006, 27 (01) :75-86
[6]  
CHEN G, 2004, P CHIN C DYN NONL VI
[7]   Yet another chaotic attractor [J].
Chen, GR ;
Ueta, T .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07) :1465-1466
[8]  
Chow SN., 1994, Normal forms and Bifurcation of planar vector fields, DOI 10.1017/CBO9780511665639
[9]  
GUCKENHEIMER J, 1983, NONLINEAR OSCILLATIO
[10]  
Kuznetsov Y. A., 1998, ELEMENTS APPL BIFURC, DOI [10.1007/b98848, DOI 10.1007/978-1-4757-2421-9]