Coordination Assembly of Metal-Organic Materials

被引:16
|
作者
Pan, Mei [1 ]
Wei, Zhangwen [1 ]
Xu, Yaowei [1 ]
Su, Cheng-Yong [1 ]
机构
[1] Sun Yat Sen Univ, Sch Chem, Guangzhou 510275, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
supramolecular coordination chemistry; supramolecular syntheses; coordination assembly; crystal engineering; molecular architecture; HYDROTHERMAL SYNTHESIS; SINGLE-CRYSTAL; POSTSYNTHETIC LIGAND; FUNCTIONAL-GROUPS; MICROWAVE SYNTHESIS; STEPWISE SYNTHESIS; COPPER COMPLEXES; PORE SURFACE; FRAMEWORK; EXCHANGE;
D O I
10.7536/PC161222
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Supramolecular coordination chemistry is the domain of inorganic chemistry beyond the molecules, in which coordination interactions play important roles in self-assembly and properties of coordination supramolecular materials, also called metal-organic materials (MOMs). The MOMs are mainly divided into two different types; discrete or oligomeric coordination entities showing specific shapes, sizes or cavities (such as molecular polygons/polyhedra, helicates, rotaxanes, catenanes, etc.), and infinite/polymeric coordination ensembles assembled from a variable number of components (such as coordination polymers, metal-organic frameworks, metal-organic gels, etc.). With the burgeon of supramolecular coordination chemistry, various designable, predictable and tunable strategies of coordination-driven self-assembly have been developed, which propel the field of supramolecular coordination itself, as well as the modern supramolecular syntheses, toward an unprecendently high level. This review mainly introduces a number of common strategies for the preparation of MOMs, especially those for controllable assembly of MOMs with distinctive structural features.
引用
收藏
页码:47 / 74
页数:28
相关论文
共 192 条
  • [1] Knot tied around an octahedral metal centre
    Adams, H
    Ashworth, E
    Breault, GA
    Guo, J
    Hunter, CA
    Mayers, PC
    [J]. NATURE, 2001, 411 (6839) : 763 - 763
  • [2] Facile shaping of an imidazolate-based MOF on ceramic beads for adsorption and catalytic applications
    Aguado, Sonia
    Canivet, Jerome
    Farrusseng, David
    [J]. CHEMICAL COMMUNICATIONS, 2010, 46 (42) : 7999 - 8001
  • [3] Let's twist again - Double-stranded, triple-stranded, and circular helicates
    Albrecht, M
    [J]. CHEMICAL REVIEWS, 2001, 101 (11) : 3457 - 3497
  • [4] Ionic Conductivity in the Metal-Organic Framework UiO-66 by Dehydration and Insertion of Lithium tert-Butoxide
    Ameloot, Rob
    Aubrey, Michael
    Wiers, Brian M.
    Gomora-Figueroa, Ana P.
    Patel, Shrayesh N.
    Balsara, Nitash P.
    Long, Jeffrey R.
    [J]. CHEMISTRY-A EUROPEAN JOURNAL, 2013, 19 (18) : 5533 - 5536
  • [5] Ameloot R, 2011, NAT CHEM, V3, P382, DOI [10.1038/NCHEM.1026, 10.1038/nchem.1026]
  • [6] Patterned Growth of Metal-Organic Framework Coatings by Electrochemical Synthesis
    Ameloot, Rob
    Stappers, Linda
    Fransaer, Jan
    Alaerts, Luc
    Sels, Bert F.
    De Vos, Dirk E.
    [J]. CHEMISTRY OF MATERIALS, 2009, 21 (13) : 2580 - 2582
  • [7] [Anonymous], [No title captured], Patent No. [WO, 49892, A1, 49892]
  • [8] Oriented crystallisation on supports and anisotropic mass transport of the metal-organic framework manganese formate
    Arnold, Mirko
    Kortunov, Pavel
    Jones, Deborah J.
    Nedellec, Yannig
    Kaerger, Joerg
    Caro, Juergen
    [J]. EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2007, (01) : 60 - 64
  • [9] A synthetic molecular pentafoil knot
    Ayme, Jean-Francois
    Beves, Jonathon E.
    Leigh, David A.
    McBurney, Roy T.
    Rissanen, Kari
    Schultz, David
    [J]. NATURE CHEMISTRY, 2012, 4 (01) : 15 - 20
  • [10] Separation of CO2 from CH4 using mixed-ligand metal-organic frameworks
    Bae, Youn-Sang
    Mulfort, Karen L.
    Frost, Houston
    Ryan, Patrick
    Punnathanam, Sudeep
    Broadbelt, Linda J.
    Hupp, Joseph T.
    Snurr, Randall Q.
    [J]. LANGMUIR, 2008, 24 (16) : 8592 - 8598