Remote Sensing Image Change Detection Using Superpixel Cosegmentation

被引:12
|
作者
Zhu, Ling [1 ]
Zhang, Jingyi [1 ]
Sun, Yang [2 ]
机构
[1] Beijing Univ Civil Engn & Architecture, Sch Geomat & Urban Spatial Informat, Beijing 100044, Peoples R China
[2] Beijing Inst Surveying & Mapping, Beijing 100038, Peoples R China
关键词
change detection; cosegmentation; superpixel segmentation; minimum cut/maximum flow;
D O I
10.3390/info12020094
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The application of cosegmentation in remote sensing image change detection can effectively overcome the salt and pepper phenomenon and generate multitemporal changing objects with consistent boundaries. Cosegmentation considers the image information, such as spectrum and texture, and mines the spatial neighborhood information between pixels. However, each pixel in the minimum cut/maximum flow algorithm for cosegmentation change detection is regarded as a node in the network flow diagram. This condition leads to a direct correlation between computation times and the number of nodes and edges in the diagram. It requires a large amount of computation and consumes excessive time for change detection of large areas. A superpixel segmentation method is combined into cosegmentation to solve this shortcoming. Simple linear iterative clustering is adopted to group pixels by using the similarity of features among pixels. Two-phase superpixels are overlaid to form the multitemporal consistent superpixel segmentation. Each superpixel block is regarded as a node for cosegmentation change detection, so as to reduce the number of nodes in the network flow diagram constructed by minimum cut/maximum flow. In this study, the Chinese GF-1 and Landsat satellite images are taken as examples, the overall accuracy of the change detection results is above 0.80, and the calculation time is only one-fifth of the original.
引用
收藏
页码:1 / 23
页数:23
相关论文
共 50 条
  • [31] A VARIATIONAL BAYESIAN APPROACH TO REMOTE SENSING IMAGE CHANGE DETECTION
    Chen, Keming
    Li, Zhenglong
    Cheng, Jian
    Zhou, Zhixin
    Lu, Hanqing
    2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, : 1506 - 1509
  • [32] A hybrid change detection analysis using high-resolution remote sensing image
    Xu, Q. Q.
    Liu, Z. J.
    Yang, M. Z.
    Ren, H. C.
    Song, C.
    Li, F. F.
    6TH DIGITAL EARTH SUMMIT, 2016, 46
  • [33] Semi Supervised Change Detection Method of Remote Sensing Image
    Nie, Wei
    Gou, Peng
    Liu, Yang
    Shrestha, Bhaskar
    Zhou, Tianyu
    Xu, Nuo
    Wang, Peng
    Du, Qiqi
    2022 IEEE 6TH ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC), 2022, : 1013 - 1019
  • [34] Research Review of Remote Sensing Image Change Detection Methods
    Sun, Jianming
    Zhao, Mengxin
    Hao, Xuyao
    Computer Engineering and Applications, 2024, 60 (20) : 30 - 48
  • [35] Deep supervised network for change detection of remote sensing image
    Yuan X.-P.
    Wang X.-Q.
    He X.
    Hu Y.-M.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2023, 57 (10): : 1966 - 1976
  • [36] River change detection based on remote sensing image and vector
    Zhu, Lina
    Zhang, Hanqing
    Pa, Li
    FIRST INTERNATIONAL MULTI-SYMPOSIUMS ON COMPUTER AND COMPUTATIONAL SCIENCES (IMSCCS 2006), PROCEEDINGS, VOL 1, 2006, : 188 - +
  • [37] Feature Hierarchical Differentiation for Remote Sensing Image Change Detection
    Pei, Gensheng
    Zhang, Lulu
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [38] Hypergraph Representation Learning for Remote Sensing Image Change Detection
    Cui, Zhoujuan
    Zu, Yueran
    Duan, Yiping
    Tao, Xiaoming
    REMOTE SENSING, 2024, 16 (18)
  • [39] Remote Sensing Image Change Detection Method Based on Adaptive Boundary Sensing
    Liu, Yong
    Guo, Haitao
    Lu, Jun
    Liu, Xiangyun
    Ding, Lei
    Zhu, Kun
    Yu, Donghang
    ACTA OPTICA SINICA, 2024, 44 (18)
  • [40] Region-of-Interest Detection via Superpixel-to-Pixel Saliency Analysis for Remote Sensing Image
    Ma, Long
    Du, Bin
    Chen, He
    Soomro, Nouman Q.
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (12) : 1752 - 1756