Remote Sensing Image Change Detection Using Superpixel Cosegmentation

被引:12
|
作者
Zhu, Ling [1 ]
Zhang, Jingyi [1 ]
Sun, Yang [2 ]
机构
[1] Beijing Univ Civil Engn & Architecture, Sch Geomat & Urban Spatial Informat, Beijing 100044, Peoples R China
[2] Beijing Inst Surveying & Mapping, Beijing 100038, Peoples R China
关键词
change detection; cosegmentation; superpixel segmentation; minimum cut/maximum flow;
D O I
10.3390/info12020094
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The application of cosegmentation in remote sensing image change detection can effectively overcome the salt and pepper phenomenon and generate multitemporal changing objects with consistent boundaries. Cosegmentation considers the image information, such as spectrum and texture, and mines the spatial neighborhood information between pixels. However, each pixel in the minimum cut/maximum flow algorithm for cosegmentation change detection is regarded as a node in the network flow diagram. This condition leads to a direct correlation between computation times and the number of nodes and edges in the diagram. It requires a large amount of computation and consumes excessive time for change detection of large areas. A superpixel segmentation method is combined into cosegmentation to solve this shortcoming. Simple linear iterative clustering is adopted to group pixels by using the similarity of features among pixels. Two-phase superpixels are overlaid to form the multitemporal consistent superpixel segmentation. Each superpixel block is regarded as a node for cosegmentation change detection, so as to reduce the number of nodes in the network flow diagram constructed by minimum cut/maximum flow. In this study, the Chinese GF-1 and Landsat satellite images are taken as examples, the overall accuracy of the change detection results is above 0.80, and the calculation time is only one-fifth of the original.
引用
收藏
页码:1 / 23
页数:23
相关论文
共 50 条
  • [21] Coastline change detection using remote sensing
    A. A. Alesheikh
    A. Ghorbanali
    N. Nouri
    International Journal of Environmental Science & Technology, 2007, 4 : 61 - 66
  • [22] Coastline change detection using remote sensing
    Alesheikh, A. A.
    Ghorbanali, A.
    Nouri, N.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2007, 4 (01) : 61 - 66
  • [23] Vehicle detection method based on remote sensing image fusion of superpixel and multi-modal sensing network
    Lian Y.
    Li G.
    Shen S.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2023, 31 (06): : 905 - 919
  • [24] Image Registration and Change Detection for Artifact Detection in Remote Sensing Imagery
    Zelinski, Michael E.
    Henderson, John R.
    Held, Elizabeth L.
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XXIV, 2018, 10644
  • [25] Superpixel-Based Difference Representation Learning for Change Detection in Multispectral Remote Sensing Images
    Gong, Maoguo
    Zhan, Tao
    Zhang, Puzhao
    Miao, Qiguang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (05): : 2658 - 2673
  • [26] AN UNSUPERVISED SIAMESE SUPERPIXEL-BASED NETWORK FOR CHANGE DETECTION IN HETEROGENEOUS REMOTE SENSING IMAGES
    Ji, Zhiyuan
    Wang, Xueqian
    Wang, Zhihao
    Li, Gang
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5451 - 5454
  • [27] Progressive Refinement Network for Remote Sensing Image Change Detection
    Xu, Xinghan
    Liang, Yi
    Liu, Jianwei
    Zhang, Chengkun
    Wang, Deyi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [28] An Unsupervised Change Detection Approach for Remote Sensing Image Using Visual Attention Mechanism
    Wu, Lin
    Feng, Guanghua
    Long, Jiangtao
    IMAGE AND GRAPHICS (ICIG 2017), PT I, 2017, 10666 : 58 - 69
  • [29] Satellite remote sensing for detailed landslide inventories using change detection and image fusion
    Nichol, J
    Wong, MS
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2005, 26 (09) : 1913 - 1926
  • [30] Network and Dataset for Multiscale Remote Sensing Image Change Detection
    Liu, Shenbo
    Zhao, Dongxue
    Zhou, Yuheng
    Tan, Ying
    He, Huang
    Zhang, Zhao
    Tang, Lijun
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 2851 - 2866