On orbit closures of symmetric subgroups in flag varieties

被引:22
作者
Brion, M [1 ]
Helminck, AG
机构
[1] CNRS, UMR 5582, Inst Fourier, Dept Math, F-38402 St Martin Dheres, France
[2] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2000年 / 52卷 / 02期
关键词
D O I
10.4153/CJM-2000-012-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study K-orbits in G/P where G is a complex connected reductive group, P subset of or equal to G is a parabolic subgroup, and K subset of or equal to G is the fixed point subgroup of an involutive automorphism theta. Generalizing work of Springer, we parametrize the (finite) orbit set K \ G/P and we determine the isotropy groups. As a consequence, we describe the closed (resp. affine) orbits in terms of theta-stable (resp. theta-split) parabolic subgroups. We also describe the decomposition of any (K, P)-double coset in G into (K, B)-double cosets, where B subset of or equal to P is a Borel subgroup. Finally for certain K-orbit closures X subset of or equal to G/B, and for any homogeneous line bundle L on G/B having nonzero global sections. we show that the restriction map res(x): H-0(G/B, L) --> H-0(X, L) is surjective and that H-i(X, L) = 0 for i greater than or equal to 1. Moreover, we describe the R-module H-0(X, L). This gives information on the restriction to K of the simple G-module H-0(G/B, L). Our construction is a geometric analogue of Vogan and Sepanski's approach to extremal K-types.
引用
收藏
页码:265 / 292
页数:28
相关论文
共 17 条
[1]   K-ORBITS ON GRASSMANNIANS AND A PRV CONJECTURE FOR REAL-GROUPS [J].
BARBASCH, D ;
EVENS, S .
JOURNAL OF ALGEBRA, 1994, 167 (02) :258-283
[2]  
Borel A., 1991, GRADUATE TEXTS MATH, DOI 10.1007/978-1-4612-0941-6
[3]  
Borel A., 1965, Publications Mathematiques. Institut de Hautes Etudes Scientifiques, V27, P55
[4]   On the general faces of the moment polytope [J].
Brion, M .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 1999, 1999 (04) :185-201
[5]  
Brundan J, 1998, NATO ADV SCI I C-MAT, V517, P259
[6]   Multiplicity-free subgroups of reductive algebraic groups [J].
Brundan, J .
JOURNAL OF ALGEBRA, 1997, 188 (01) :310-330
[7]   Tori invariant under an involutorial automorphism .2. [J].
Helminck, AG .
ADVANCES IN MATHEMATICS, 1997, 131 (01) :1-92
[8]   TORI INVARIANT UNDER AN INVOLUTORIAL AUTOMORPHISM .1. [J].
HELMINCK, AG .
ADVANCES IN MATHEMATICS, 1991, 85 (01) :1-38
[9]   ON RATIONALITY PROPERTIES OF INVOLUTIONS OF REDUCTIVE GROUPS [J].
HELMINCK, AG ;
WANG, SP .
ADVANCES IN MATHEMATICS, 1993, 99 (01) :26-96
[10]   MULTIPLICITY FREE SUBGROUPS OF COMPACT CONNECTED LIE GROUPS [J].
KRAMER, M .
ARCHIV DER MATHEMATIK, 1976, 27 (01) :28-36