Mechanics of high-capacity electrodes in lithium-ion batteries

被引:9
|
作者
Zhu, Ting [1 ]
机构
[1] Georgia Inst Technol, Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
lithium-ion batteries; mechanics; electrochemistry; silicon; IN-SITU TEM; ELECTROCHEMICALLY LITHIATED SILICON; BINARY DIFFUSION COUPLES; AMORPHOUS-SILICON; CRYSTALLINE SILICON; 1ST PRINCIPLES; CHARGING RATE; STRESS; NANOWIRES; ANODES;
D O I
10.1088/1674-1056/25/1/014601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Rechargeable batteries, such as lithium-ion batteries, play an important role in the emerging sustainable energy landscape. Mechanical degradation and resulting capacity fade in high-capacity electrode materials critically hinder their use in high-performance lithium-ion batteries. This paper presents an overview of recent advances in understanding the electrochemically-induced mechanical behavior of the electrode materials in lithium-ion batteries. Particular emphasis is placed on stress generation and facture in high-capacity anode materials such as silicon. Finally, we identify several important unresolved issues for future research.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Reversible High-Capacity Si Nanocomposite Anodes for Lithium-ion Batteries Enabled by Molecular Layer Deposition
    Piper, Daniela Molina
    Travis, Jonathan J.
    Young, Matthias
    Son, Seoung-Bum
    Kim, Seul Cham
    Oh, Kyu Hwan
    George, Steven M.
    Ban, Chunmei
    Lee, Se-Hee
    ADVANCED MATERIALS, 2014, 26 (10) : 1596 - 1601
  • [32] A high-capacity catechol-based cathode material for rechargeable lithium-ion batteries
    Zhang, Ruiqiang
    Zhang, Ying
    Yin, Xizhong
    Meng, Zhiying
    Du, Ya
    Yang, Haishen
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2020, 15 (08): : 8311 - 8320
  • [33] Lithium molybdate composited with carbon nanofibers as a high-capacity and stable anode material for lithium-ion batteries
    Wang, Jiaqi
    Yao, Junyi
    Li, Wanying
    Zhu, Wenhao
    Yang, Jie
    Zhao, Jianqing
    Gao, Lijun
    ENERGY MATERIALS, 2022, 2 (04):
  • [34] Towards high-energy-density lithium-ion batteries: Strategies for developing high-capacity lithium-rich cathode materials
    Zhao, Shuoqing
    Guo, Ziqi
    Yan, Kang
    Wan, Shuwei
    He, Fengrong
    Sun, Bing
    Wang, Guoxiu
    ENERGY STORAGE MATERIALS, 2021, 34 (34) : 716 - 734
  • [35] The Effect of a Dual-Layer Coating for High-Capacity Silicon/Graphite Negative Electrodes on the Electrochemical Performance of Lithium-Ion Batteries
    Lim, Seonghyun
    Kim, Minjae
    BATTERIES-BASEL, 2024, 10 (09):
  • [36] Silicon Few-Layer Graphene Nanocomposite as High-Capacity and High-Rate Anode in Lithium-Ion Batteries
    Palumbo, Stefano
    Silvestri, Laura
    Ansaldo, Alberto
    Brescia, Rosaria
    Bonaccorso, Francesco
    Pellegrini, Vittorio
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (03) : 1793 - 1802
  • [37] Optimization of Edge Quality in the Slot-Die Coating Process of High-Capacity Lithium-Ion Battery Electrodes
    Spiegel, Sandro
    Hoffmann, Alexander
    Klemens, Julian
    Scharfer, Philip
    Schabel, Wilhelm
    ENERGY TECHNOLOGY, 2023, 11 (05)
  • [38] Si@Cu composite anode material prepared by magnetron sputtering for high-capacity lithium-ion batteries
    Zhang, Junying
    Hou, Zhi-Ling
    Zhang, Xiaoming
    Li, Chuanbo
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (07) : 4766 - 4771
  • [39] A promising silicon/carbon xerogel composite for high-rate and high-capacity lithium-ion batteries
    dos Santos-Gomez, Lucia
    Cuesta, Nuria
    Camean, Ignacio
    Garcia-Granda, S.
    Garcia, Ana B.
    Arenillas, Ana
    ELECTROCHIMICA ACTA, 2022, 426
  • [40] Porous Manganese Oxide Networks as High-Capacity and High-Rate Anodes for Lithium-Ion Batteries
    Choi, Jaeho
    Byun, Woo Jin
    Kang, DongHwan
    Lee, Jung Kyoo
    ENERGIES, 2021, 14 (05)