Polarization fields in III-nitride nanowire devices

被引:28
|
作者
Mastro, Michael A. [1 ]
Simpkins, Blake [1 ]
Wang, George T. [2 ]
Hite, Jennifer [1 ]
Eddy, Charles R., Jr. [1 ]
Kim, Hong-Youl [3 ]
Ahn, Jaehui [3 ]
Kim, Jihyun [3 ]
机构
[1] USN, Res Lab, Washington, DC 20375 USA
[2] Sandia Natl Labs, Albuquerque, NM 87185 USA
[3] Korea Univ, Dept Chem & Biol Engn, Seoul 136701, South Korea
关键词
GROWTH; GAN; HETEROSTRUCTURES;
D O I
10.1088/0957-4484/21/14/145205
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Control of the polarization fields is the most important parameter in designing III-nitride thin-film devices, and herein we show that the polarization fields may be equally, if not more, important in devising III-nitride nanowire devices. One common approach to produce III-nitride nanowires is via a vapor-liquid-solid approach that, in general, yields nanowires with the major (growth) axis in the < 11 (2) over bar0 > direction. The cross section of this wire is an isosceles triangle with two {1 (1) over bar 01} facets and one {0001} facet. In this work, we analyze the polarization fields that arise in two distinct sets of crystal planes that can manifest in this triangular nanowire geometry: (0001), (1 (1) over bar0 (1) over bar), ((1) over bar 10 (1) over bar) or (000 (1) over bar), (1 (1) over bar 01), ((1) over bar 101). Calculations show that the polarization field at the {0001} facet is much larger than at the two opposing {1 (1) over bar 01} facets, although the sign of the field at each facet has a complicated dependence on the orientation and structure of the nanowire. An undoped nanowire transistor was fabricated that displayed p-type operation based solely on polarization-induced hole carriers at the (000 (1) over bar) AlGaN/GaN interface, consistent with our field calculations.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] III-Nitride Electrically Pumped Visible and Near-Infrared Nanowire Lasers on (001) Silicon
    Bhattacharya, P.
    Hazari, A.
    Jahangir, S.
    Guo, W.
    Frost, T.
    III-NITRIDE SEMICONDUCTOR OPTOELECTRONICS, 2017, 96 : 385 - 409
  • [42] Fabrication of Phosphor-Free III-Nitride Nanowire Light-Emitting Diodes on Metal Substrates for Flexible Photonics
    Philip, Moab Rajan
    Choudhary, Dipayan Datta
    Djavid, Mehrdad
    Bhuyian, Md Nasiruddin
    Thang Ha Quoc Bui
    Misra, Durgamadhab
    Khreishah, Abdallah
    Piao, James
    Hoang Duy Nguyen
    Le, Khai Quang
    Hieu Pham Trung Nguyen
    ACS OMEGA, 2017, 2 (09): : 5708 - 5714
  • [43] Defects in III-nitride microdisk cavities
    Ren, C. X.
    Puchtler, T. J.
    Zhu, T.
    Griffiths, J. T.
    Oliver, R. A.
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2017, 32 (03)
  • [44] III-Nitride Nanostructures for High Efficiency Micro-LEDs and Ultraviolet Optoelectronics
    Pandey, Ayush
    Mi, Zetian
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 2022, 58 (04)
  • [45] III-Nitride millimeter wave transistors
    Shinohara, Keisuke
    III-NITRIDE ELECTRONIC DEVICES, 2019, 102 : 141 - 184
  • [46] Polarization-engineering in group III-nitride heterostructures: New opportunities for device design
    Jena, Debdeep
    Simon, John
    Wang, Albert
    Cao, Yu
    Goodman, Kevin
    Verma, Jai
    Ganguly, Satyaki
    Li, Guowang
    Karda, Kamal
    Protasenko, Vladimir
    Lian, Chuanxin
    Kosel, Thomas
    Fay, Patrick
    Xing, Huili
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2011, 208 (07): : 1511 - 1516
  • [47] III-Nitride Tunnel Junctions and Their Applications
    Rajan, S.
    Takeuchi, T.
    III-NITRIDE BASED LIGHT EMITTING DIODES AND APPLICATIONS, 2ND EDITION, 2017, 133 : 209 - 238
  • [48] Interband tunnel junctions for wurtzite III-nitride semiconductors based on heterointerface polarization charges
    Schubert, Martin F.
    PHYSICAL REVIEW B, 2010, 81 (03)
  • [49] Progress in Modeling of III-Nitride MOVPE
    Dauelsberg, Martin
    Talalaev, Roman
    PROGRESS IN CRYSTAL GROWTH AND CHARACTERIZATION OF MATERIALS, 2020, 66 (03)
  • [50] Photogated transistor of III-nitride nanorods
    Seo, H. W.
    Tu, L. W.
    Chen, Q. Y.
    Ho, C. Y.
    Lin, Y. T.
    Wu, K. L.
    Jang, D. J.
    Norman, D. P.
    Ho, N. J.
    APPLIED PHYSICS LETTERS, 2010, 96 (10)