Polarization fields in III-nitride nanowire devices

被引:28
|
作者
Mastro, Michael A. [1 ]
Simpkins, Blake [1 ]
Wang, George T. [2 ]
Hite, Jennifer [1 ]
Eddy, Charles R., Jr. [1 ]
Kim, Hong-Youl [3 ]
Ahn, Jaehui [3 ]
Kim, Jihyun [3 ]
机构
[1] USN, Res Lab, Washington, DC 20375 USA
[2] Sandia Natl Labs, Albuquerque, NM 87185 USA
[3] Korea Univ, Dept Chem & Biol Engn, Seoul 136701, South Korea
关键词
GROWTH; GAN; HETEROSTRUCTURES;
D O I
10.1088/0957-4484/21/14/145205
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Control of the polarization fields is the most important parameter in designing III-nitride thin-film devices, and herein we show that the polarization fields may be equally, if not more, important in devising III-nitride nanowire devices. One common approach to produce III-nitride nanowires is via a vapor-liquid-solid approach that, in general, yields nanowires with the major (growth) axis in the < 11 (2) over bar0 > direction. The cross section of this wire is an isosceles triangle with two {1 (1) over bar 01} facets and one {0001} facet. In this work, we analyze the polarization fields that arise in two distinct sets of crystal planes that can manifest in this triangular nanowire geometry: (0001), (1 (1) over bar0 (1) over bar), ((1) over bar 10 (1) over bar) or (000 (1) over bar), (1 (1) over bar 01), ((1) over bar 101). Calculations show that the polarization field at the {0001} facet is much larger than at the two opposing {1 (1) over bar 01} facets, although the sign of the field at each facet has a complicated dependence on the orientation and structure of the nanowire. An undoped nanowire transistor was fabricated that displayed p-type operation based solely on polarization-induced hole carriers at the (000 (1) over bar) AlGaN/GaN interface, consistent with our field calculations.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Critical Evaluation of Various Spontaneous Polarization Models and Induced Electric Fields in III-Nitride Multi-Quantum Wells
    Ahmad, Ashfaq
    Strak, Pawel
    Koronski, Kamil
    Kempisty, Pawel
    Sakowski, Konrad
    Piechota, Jacek
    Grzegory, Izabella
    Wierzbicka, Aleksandra
    Kryvyi, Serhii
    Monroy, Eva
    Kaminska, Agata
    Krukowski, Stanislaw
    MATERIALS, 2021, 14 (17)
  • [22] III-Nitride Based Avalanche Photo Detectors
    McClintock, Ryan
    Cicek, Erdem
    Vashaei, Zahra
    Bayram, Can
    Razeghi, Manijeh
    Ulmer, Melville P.
    DETECTORS AND IMAGING DEVICES: INFRARED, FOCAL PLANE, SINGLE PHOTON, 2010, 7780
  • [23] III-nitride nanowires: Growth, properties, and applications
    Wang, George T.
    Li, Qiming
    Huang, Jianyu
    Talin, A. Alec
    Lin, Yong
    Arslan, Ilke
    Armstrong, Andrew
    Upadhya, Prashanth C.
    Prasankumar, Rohit P.
    NANOEPITAXY: HOMO- AND HETEROGENEOUS SYNTHESIS, CHARACTERIZATION, AND DEVICE INTEGRATION OF NANOMATERIALS II, 2010, 7768
  • [24] Spatial Inhomogeneity of Luminescence in III-Nitride Compounds
    Tamulaitis, Gintautas
    MATERIALS SCIENCE-MEDZIAGOTYRA, 2011, 17 (04): : 343 - 351
  • [25] Progress in periodically oriented III-nitride materials
    Hite, Jennifer
    JOURNAL OF CRYSTAL GROWTH, 2016, 456 : 133 - 136
  • [26] III-Nitride avalanche photodiodes
    McClintock, Ryan
    Pau, Jose L.
    Bayram, Can
    Fain, Bruno
    Giedraitis, Paul
    Razeghi, Manijeh
    Ulmer, Melville P.
    QUANTUM SENSING AND NANOPHOTONIC DEVICES VI, 2009, 7222
  • [27] III-nitride photonic cavities
    Butte, Raphael
    Grandjean, Nicolas
    NANOPHOTONICS, 2020, 9 (03) : 569 - 598
  • [28] III-Nitride avalanche photodiodes
    Kung, Patrick
    McClintock, Ryan
    Vizcaino, Jose Luis Pau
    Minder, Kathryn
    Bayram, Can
    Razeghi, Manijeh
    QUANTUM SENSING AND NANOPHOTONIC DEVICES IV, 2007, 6479
  • [29] Molecular Beam Epitaxy of III-Nitride Nanowires
    Zhao, S.
    Wang, Renjie
    Chu, Sheng
    Mi, Zetian
    IEEE NANOTECHNOLOGY MAGAZINE, 2019, 13 (02) : 6 - 16
  • [30] Enhanced uniformity of III-nitride nanowire arrays on bulk metallic glass and nanocrystalline substrates
    May, Brelon J.
    Hettiaratchy, Elline C.
    Selcu, Camelia
    Wang, Binbin
    Esser, Bryan D.
    McComb, David W.
    Myers, Roberto C.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2019, 37 (03):