Polarization fields in III-nitride nanowire devices

被引:28
作者
Mastro, Michael A. [1 ]
Simpkins, Blake [1 ]
Wang, George T. [2 ]
Hite, Jennifer [1 ]
Eddy, Charles R., Jr. [1 ]
Kim, Hong-Youl [3 ]
Ahn, Jaehui [3 ]
Kim, Jihyun [3 ]
机构
[1] USN, Res Lab, Washington, DC 20375 USA
[2] Sandia Natl Labs, Albuquerque, NM 87185 USA
[3] Korea Univ, Dept Chem & Biol Engn, Seoul 136701, South Korea
关键词
GROWTH; GAN; HETEROSTRUCTURES;
D O I
10.1088/0957-4484/21/14/145205
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Control of the polarization fields is the most important parameter in designing III-nitride thin-film devices, and herein we show that the polarization fields may be equally, if not more, important in devising III-nitride nanowire devices. One common approach to produce III-nitride nanowires is via a vapor-liquid-solid approach that, in general, yields nanowires with the major (growth) axis in the < 11 (2) over bar0 > direction. The cross section of this wire is an isosceles triangle with two {1 (1) over bar 01} facets and one {0001} facet. In this work, we analyze the polarization fields that arise in two distinct sets of crystal planes that can manifest in this triangular nanowire geometry: (0001), (1 (1) over bar0 (1) over bar), ((1) over bar 10 (1) over bar) or (000 (1) over bar), (1 (1) over bar 01), ((1) over bar 101). Calculations show that the polarization field at the {0001} facet is much larger than at the two opposing {1 (1) over bar 01} facets, although the sign of the field at each facet has a complicated dependence on the orientation and structure of the nanowire. An undoped nanowire transistor was fabricated that displayed p-type operation based solely on polarization-induced hole carriers at the (000 (1) over bar) AlGaN/GaN interface, consistent with our field calculations.
引用
收藏
页数:5
相关论文
共 19 条
[1]   Coaxial Group III-Nitride Nanowire Photovoltaics [J].
Dong, Yajie ;
Tian, Bozhi ;
Kempa, Thomas J. ;
Lieber, Charles M. .
NANO LETTERS, 2009, 9 (05) :2183-2187
[2]   Equilibrium limits of coherency in strained nanowire heterostructures [J].
Ertekin, E ;
Greaney, PA ;
Chrzan, DC ;
Sands, TD .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (11)
[3]   Development of Nonpolar and Semipolar InGaN/GaN Visible Light-Emitting Diodes [J].
Feezell, Daniel F. ;
Schmidt, Mathew C. ;
DenBaars, Steven P. ;
Nakamura, Shuji .
MRS BULLETIN, 2009, 34 (05) :318-323
[4]   Polarization fields of III-nitrides grown in different crystal orientations [J].
Feneberg, M. ;
Thonke, K. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (40)
[5]   Semipolar III Nitride Semiconductors: Crystal Growth, Device Fabrication, and Optical Anisotropy [J].
Funato, Mitsuru ;
Kawakami, Yoichi .
MRS BULLETIN, 2009, 34 (05) :334-340
[6]   Complete composition tunability of InGaN nanowires using a combinatorial approach [J].
Kuykendall, Tevye ;
Ulrich, Philipp ;
Aloni, Shaul ;
Yang, Peidong .
NATURE MATERIALS, 2007, 6 (12) :951-956
[7]   The role of collisions in the aligned growth of vertical nanowires [J].
Li, Qiming ;
Creighton, J. Randall ;
Wang, George T. .
JOURNAL OF CRYSTAL GROWTH, 2008, 310 (16) :3706-3709
[8]   Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors [J].
Li, Yat ;
Xiang, Jie ;
Qian, Fang ;
Gradecak, Silvija ;
Wu, Yue ;
Yan, Hao ;
Yan, Hao ;
Blom, Douglas A. ;
Lieber, Charles M. .
NANO LETTERS, 2006, 6 (07) :1468-1473
[9]  
MASTRO MA, 2008, ECS T, V13, P21, DOI DOI 10.1149/1.2913077
[10]   Plasmonically enhanced emission from a group-III nitride nanowire emitter [J].
Mastro, Michael A. ;
Freitas, Jaime A., Jr. ;
Glembocki, Orest ;
Eddy, Charles R. ;
Holm, R. T. ;
Henry, Rich L. ;
Caldwell, Josh ;
Rendell, Ronald W. ;
Kub, Fritz ;
Kim, J. .
NANOTECHNOLOGY, 2007, 18 (26)