Polarization fields in III-nitride nanowire devices

被引:28
|
作者
Mastro, Michael A. [1 ]
Simpkins, Blake [1 ]
Wang, George T. [2 ]
Hite, Jennifer [1 ]
Eddy, Charles R., Jr. [1 ]
Kim, Hong-Youl [3 ]
Ahn, Jaehui [3 ]
Kim, Jihyun [3 ]
机构
[1] USN, Res Lab, Washington, DC 20375 USA
[2] Sandia Natl Labs, Albuquerque, NM 87185 USA
[3] Korea Univ, Dept Chem & Biol Engn, Seoul 136701, South Korea
关键词
GROWTH; GAN; HETEROSTRUCTURES;
D O I
10.1088/0957-4484/21/14/145205
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Control of the polarization fields is the most important parameter in designing III-nitride thin-film devices, and herein we show that the polarization fields may be equally, if not more, important in devising III-nitride nanowire devices. One common approach to produce III-nitride nanowires is via a vapor-liquid-solid approach that, in general, yields nanowires with the major (growth) axis in the < 11 (2) over bar0 > direction. The cross section of this wire is an isosceles triangle with two {1 (1) over bar 01} facets and one {0001} facet. In this work, we analyze the polarization fields that arise in two distinct sets of crystal planes that can manifest in this triangular nanowire geometry: (0001), (1 (1) over bar0 (1) over bar), ((1) over bar 10 (1) over bar) or (000 (1) over bar), (1 (1) over bar 01), ((1) over bar 101). Calculations show that the polarization field at the {0001} facet is much larger than at the two opposing {1 (1) over bar 01} facets, although the sign of the field at each facet has a complicated dependence on the orientation and structure of the nanowire. An undoped nanowire transistor was fabricated that displayed p-type operation based solely on polarization-induced hole carriers at the (000 (1) over bar) AlGaN/GaN interface, consistent with our field calculations.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] III-Nitride nanowire optoelectronics
    Zhao, Songrui
    Nguyen, Hieu P. T.
    Kibria, Md. G.
    Mi, Zetian
    PROGRESS IN QUANTUM ELECTRONICS, 2015, 44 : 14 - 68
  • [2] III-nitride UV devices
    Khan, MA
    Shatalov, M
    Maruska, HP
    Wang, HM
    Kuokstis, E
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2005, 44 (10): : 7191 - 7206
  • [3] Polarization doping for III-nitride optoelectronics
    Khokhlev, Oleg V.
    Bulashevich, Kirill A.
    Karpov, Sergey Yu.
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2013, 210 (07): : 1369 - 1376
  • [4] Coaxial Group III-Nitride Nanowire Photovoltaics
    Dong, Yajie
    Tian, Bozhi
    Kempa, Thomas J.
    Lieber, Charles M.
    NANO LETTERS, 2009, 9 (05) : 2183 - 2187
  • [5] Edge Termination for III-Nitride Vertical Power Devices Using Polarization Engineering
    Peart, Matthew R.
    Wierer, Jonathan J., Jr.
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2020, 67 (02) : 571 - 575
  • [6] Review of recent progress of III-nitride nanowire lasers
    Arafin, Shamsul
    Liu, Xianhe
    Mi, Zetian
    JOURNAL OF NANOPHOTONICS, 2013, 7
  • [7] Structural Characterization of III-Nitride Materials and Devices
    Smith, David J.
    Zhou, Lin
    Moustakas, T. D.
    QUANTUM SENSING AND NANOPHOTONIC DEVICES VIII, 2011, 7945
  • [8] III-Nitride Materials and Devices for Power Electronics
    Dobrinsky, A.
    Simin, G.
    Gaska, R.
    Shur, M.
    GALLIUM NITRIDE AND SILICON CARBIDE POWER TECHNOLOGIES 3, 2013, 58 (04): : 129 - 143
  • [9] (Invited) Material Considerations for the Development of III-nitride Power Devices
    Sarkar, B.
    Reddy, P.
    Kaess, F.
    Haidet, B. B.
    Tweedie, J.
    Mita, S.
    Kirste, R.
    Kohn, E.
    Collazo, R.
    Sitar, Z.
    GALLIUM NITRIDE AND SILICON CARBIDE POWER TECHNOLOGIES 7, 2017, 80 (07): : 29 - 36
  • [10] Epitaxial lift-off for III-nitride devices
    Youtsey, Chris
    McCarthy, Robert
    Fay, Patrick
    III-NITRIDE ELECTRONIC DEVICES, 2019, 102 : 467 - 514