TOPOLOGY OPTIMIZATION FOR INCREMENTAL ELASTOPLASTICITY: A PHASE-FIELD APPROACH

被引:11
|
作者
Almi, Stefano [1 ]
Stefanelli, Ulisse [1 ,2 ,3 ]
机构
[1] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[2] Univ Vienna, Vienna Res Platform Accelerating Photoreact Disco, Wahringerstr 17, A-1090 Vienna, Austria
[3] Ist Matemat Applicata & Tecnol Informat E Magenes, Via Ferrata 1, I-27100 Pavia, Italy
关键词
topology optimization; elastoplasticity; first-order conditions; QUASI-STATIC PLASTICITY; STRUCTURAL OPTIMIZATION; SHAPE OPTIMIZATION; THERMAL CONTROL; DESIGN; MODEL; HOMOGENIZATION;
D O I
10.1137/20M1331275
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We discuss a topology optimization problem for an elastoplastic medium. The distribution of material in a region is optimized with respect to a given target functional taking into account compliance. The incremental elastoplastic problem serves as a state constraint. We prove that the topology optimization problem admits a solution. First-order optimality conditions are obtained by considering a regularized problem and passing to the limit.
引用
收藏
页码:339 / 364
页数:26
相关论文
共 50 条
  • [21] Phase-field based topology optimization with polygonal elements: a finite volume approach for the evolution equation
    Arun L. Gain
    Glaucio H. Paulino
    Structural and Multidisciplinary Optimization, 2012, 46 : 327 - 342
  • [22] A phase-field method for shape optimization of incompressible flows
    Li, Futuan
    Hu, Xianliang
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 77 (04) : 1029 - 1041
  • [23] Graded-material design based on phase-field and topology optimization
    Massimo Carraturo
    Elisabetta Rocca
    Elena Bonetti
    Dietmar Hömberg
    Alessandro Reali
    Ferdinando Auricchio
    Computational Mechanics, 2019, 64 : 1589 - 1600
  • [24] Graded-material design based on phase-field and topology optimization
    Carraturo, Massimo
    Rocca, Elisabetta
    Bonetti, Elena
    Hoemberg, Dietmar
    Reali, Alessandro
    Auricchio, Ferdinando
    COMPUTATIONAL MECHANICS, 2019, 64 (06) : 1589 - 1600
  • [25] Topology optimization for nonlocal elastoplasticity at finite strain
    Hana, Jike
    Furuta, Kozo
    Kondoh, Tsuguo
    Izui, Kazuhiro
    Nishiwaki, Shinji
    Teradac, Kenjiro
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2025, 435
  • [26] A PHASE-FIELD MODEL FOR COMPLIANCE SHAPE OPTIMIZATION IN NONLINEAR ELASTICITY
    Penzler, Patrick
    Rumpf, Martin
    Wirth, Benedikt
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2012, 18 (01) : 229 - 258
  • [27] Development of a novel phase-field method for local stress-based shape and topology optimization
    Jeong, Seung Hyun
    Yoon, Gil Ho
    Takezawa, Akihiro
    Choi, Dong-Hoon
    COMPUTERS & STRUCTURES, 2014, 132 : 84 - 98
  • [28] Level-set topology optimization for maximizing fracture resistance of brittle materials using phase-field fracture model
    Wu, Chi
    Fang, Jianguang
    Zhou, Shiwei
    Zhang, Zhongpu
    Sun, Guangyong
    Steven, Grant P.
    Li, Qing
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2020, 121 (13) : 2929 - 2945
  • [29] A phase-field approach to conchoidal fracture
    Bilgen, Carola
    Kopanicakova, Alena
    Krause, Rolf
    Weinberg, Kerstin
    MECCANICA, 2018, 53 (06) : 1203 - 1219
  • [30] Finite element analysis of FGM dental crowns using phase-field approach
    Sait, Ferit
    Saeidi, Nazanin
    Korkmaz, Turan
    JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2023, 138