HILBERT SQUARES OF K3 SURFACES AND DEBARRE-VOISIN VARIETIES

被引:5
|
作者
Debarre, Olivier [1 ]
Han, Frederic [1 ]
O'Grady, Kieran [2 ]
Voisin, Claire [3 ]
机构
[1] Univ Paris, Sorbonne Univ, CNRS, Inst Math Jussieu Paris Rive Gauche, F-75013 Paris, France
[2] Sapienza Univ Roma, Dipto Matemat, Ple A Moro 5, I-00185 Rome, Italy
[3] Coll France, 3 Rue Ulm, F-75005 Paris, France
关键词
Hyperkahler fourfolds; trivectors; moduli spaces; Hilbert schemes of 2 points of a K3 surfaces; GLOBAL TORELLI THEOREM; MODULI SPACE; TAUTOLOGICAL BUNDLES; PERIOD MAP; FOURFOLDS; MANIFOLDS; STABILITY; SCHEME;
D O I
10.5802/jep.125
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Debarre-Voisin hyperkahler fourfolds are built from alternating 3-forms on a 10-dimensional complex vector space, which we call trivectors. They are analogous to the Beauville-Donagi fourfolds associated with cubic fourfolds. In this article, we study several trivectors whose associated Debarre-Voisin variety is degenerate in the sense that it is either reducible or has excessive dimension. We show that the Debarre-Voisin varieties specialize, along general 1-parameter degenerations to these trivectors, to varieties isomorphic or birationally isomorphic to the Hilbert square of a K3 surface.
引用
收藏
页码:653 / 710
页数:58
相关论文
共 50 条