Statistical predictability of wintertime PM2.5 concentrations over East Asia using simple linear regression

被引:43
作者
Jeong, Jaein I. [1 ]
Park, Rokjin J. [1 ]
Yeh, Sang-Wook [2 ]
Roh, Joon-Woo [3 ]
机构
[1] Seoul Natl Univ, Sch Earth & Environm Sci, 1 Gwanak Ro, Seoul 08826, South Korea
[2] Hanyang Univ, Dept Marine Sci & Convergence Engn, ERICA, Ansan, South Korea
[3] Korea Environm Sci & Technol Inst Inc, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Climate indices; East Asia; Simple linear regression; PM2.5; Winter monsoon; NINO-SOUTHERN OSCILLATION; HAZE POLLUTION; CHINA; EMISSIONS; MONSOON; MODEL; TEMPERATURE; DEPOSITION; AEROSOLS; TRENDS;
D O I
10.1016/j.scitotenv.2021.146059
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The interannual meteorological variability plays an important role in wintertime air quality in East Asia. In particular, monsoons and the El Nino Southern Oscillation (ENSO) are known as important mechanisms for determining wintertime PM2.5 concentrations. In addition, Arctic Oscillation, North Atlantic Oscillation, and Pacific Decadal Oscillation are also known to affect meteorological conditions and thus PM2.5 concentrations in East Asia. Here, we used a global 3-D chemical transport model (GEOS-Chem) with assimilated meteorological fields to investigate the long-term (1980-2014) relationship between 16 different climate indices and wintertime PM2.5 concentrations in this region. We show that wintertime PM2.5 concentrations in Northeast Asia (33-41 degrees N,118-141 degrees E) are highly correlated with ENSO indices and the Siberian high-pressure system. Furthermore, we develop a simple linear regression (SLR) model for the prediction of wintertime PM2.5 concentrations. Despite the use of a single predictor, the SLR model shows good performance with r > 0.72 in reproducing targeted PM2.5 concentrations. The hit and false alarm rates are 77% and 11%, respectively, indicating the high predictive accuracy of the model. In particular, the model shows excellent performance for capturing the abnormal variability of wintertime PM2.5 concentrations in Northeast Asia. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 53 条
[1]   Fifteen-Year Global Time Series of Satellite-Derived Fine Particulate Matter [J].
Boys, B. L. ;
Martin, R. V. ;
van Donkelaar, A. ;
MacDonell, R. J. ;
Hsu, N. C. ;
Cooper, M. J. ;
Yantosca, R. M. ;
Lu, Z. ;
Streets, D. G. ;
Zhang, Q. ;
Wang, S. W. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2014, 48 (19) :11109-11118
[2]  
Cai WJ, 2017, NAT CLIM CHANGE, V7, P257, DOI [10.1038/NCLIMATE3249, 10.1038/nclimate3249]
[3]  
Cohen AJ, 2017, LANCET, V389, P1907, DOI [10.1016/S0140-6736(17)30505-6, 10.1016/s0140-6736(17)30505-6]
[4]   Severe winter haze days in the Beijing-Tianjin-Hebei region from 1985 to 2017 and the roles of anthropogenic emissions and meteorology [J].
Dang, Ruijun ;
Liao, Hong .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2019, 19 (16) :10801-10816
[5]   MODIS AND OMI SATELLITE OBSERVATIONS SUPPORTING AIR QUALITY MONITORING [J].
Di Nicolantonio, W. ;
Cacciari, A. ;
Petritoli, A. ;
Carnevale, C. ;
Pisoni, E. ;
Volta, M. L. ;
Stocchi, P. ;
Curci, G. ;
Bolzacchini, E. ;
Ferrero, L. ;
Ananasso, C. ;
Tomasi, C. .
RADIATION PROTECTION DOSIMETRY, 2009, 137 (3-4) :280-287
[6]   DISTRIBUTION OF THE ESTIMATORS FOR AUTOREGRESSIVE TIME-SERIES WITH A UNIT ROOT [J].
DICKEY, DA ;
FULLER, WA .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1979, 74 (366) :427-431
[7]   Regional transport in Beijing-Tianjin-Hebei region and its changes during 2014-2017: The impacts of meteorology and emission reduction [J].
Dong, Zhaoxin ;
Wang, Shuxiao ;
Xing, Jia ;
Chang, Xing ;
Ding, Dian ;
Zheng, Haotian .
SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 737
[8]   ISORROPIA II:: a computationally efficient thermodynamic equilibrium model for K+-Ca2+-Mg2+-Nh4+-Na+-SO42--NO3--Cl--H2O aerosols [J].
Fountoukis, C. ;
Nenes, A. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2007, 7 (17) :4639-4659
[9]   The interdecadal change of the leading mode of the winter precipitation over China [J].
Ge, Jingwen ;
Jia, Xiaojing ;
Lin, Hai .
CLIMATE DYNAMICS, 2016, 47 (7-8) :2397-2411
[10]   The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions [J].
Guenther, A. B. ;
Jiang, X. ;
Heald, C. L. ;
Sakulyanontvittaya, T. ;
Duhl, T. ;
Emmons, L. K. ;
Wang, X. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2012, 5 (06) :1471-1492