Phase Flows Generated by Cauchy Problem for Nonlinear Schrodinger Equation and Dynamical Mappings of Quantum States

被引:4
作者
Efremova, L. S. [1 ,2 ]
Grekhneva, A. D. [3 ]
Sakbaev, V. Zh. [1 ,2 ]
机构
[1] Natl Res Nizhny Novgorod State Univ, Nizhnii Novgorod 603950, Russia
[2] Moscow Inst Phys & Technol, Dolgoprudnyi 141701, Russia
[3] GFRI, Zhukovskii 140180, Russia
关键词
Schrodinger equation; Cauchy problem solution; gradient blow up; multivalued mapping; quantum state; BLOW-UP; FEYNMAN FORMULAS; SET;
D O I
10.1134/S1995080219100081
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the transformation of the initial data space for the Schrodinger equation. The transformation is generated by nonlinear Schrodinger operator on the segment [-pi, pi] satisfying the homogeneous Dirichlet conditions on the boundary of the segment. The potential here has the type xi(u)=(1+ divide u divide 2)p2u, where u is an unknown function, p >= 0. The Schrodinger operator defined on the Sobolev space H02([-pi,pi])generates a vector field v:H02([-pi,pi])-H strictly equivalent to L2(-pi,pi). First, we study the phenomenon of global existence of a solution of the Cauchy problem for p is an element of [0, 4) and, second, the phenomenon of rise of a solution gradient blow up during a finite time for p is an element of [4, +infinity). In second case we study qualitative properties of a solution when it approaches to the boundary of its interval of existence. Moreover, we define a solution extension through the moment of a gradient blow up using both the one-parameter family of multifunctions and the one-parameter family of probability measures on the initial data space of the Cauchy problem. We show that this extension describes the destruction of a solution as the destruction of a pure quantum state and the transition from the set of pure quantum states into the set of mixed quantum states.
引用
收藏
页码:1455 / 1469
页数:15
相关论文
共 32 条
  • [1] Accardi L., 2002, Quantum Theory and Its Stochastic Limit
  • [2] Amosov A. A., 1979, Pis'ma v Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki, V30, P119
  • [3] GEOMETRIC PROPERTIES OF SYSTEMS OF VECTOR STATES AND EXPANSION OF STATES IN PETTIS INTEGRALS
    Amosov, G. G.
    Sakbaev, V. Zh.
    [J]. ST PETERSBURG MATHEMATICAL JOURNAL, 2016, 27 (04) : 589 - 597
  • [4] [Амосов Григорий Геннадьевич Amosov Grigori Gennadievich], 2015, [Алгебра и анализ, St. Petersburg Mathematical Journal, Algebra i analiz], V27, P1
  • [5] [Anonymous], 1966, TOPOLOGY
  • [6] Bratteli O., 1981, Texts and Monographs in Physics, DOI [10.1007/978-3-662-09089-3, DOI 10.1007/978-3-662-09089-3]
  • [7] Brezies H., 2011, Functional Analysis. Sobolev Spaces and Partial Differential Equations, DOI [10.1007/978-0-387-70914-7, DOI 10.1007/978-0-387-70914-7]
  • [8] Dynamics of skew products of interval maps
    Efremova, L. S.
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 2017, 72 (01) : 101 - 178
  • [9] NOTION OF BLOWUP OF THE SOLUTION SET OF DIFFERENTIAL EQUATIONS AND AVERAGING OF RANDOM SEMIGROUPS
    Efremova, L. S.
    Sakbaev, V. Zh
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2015, 185 (02) : 1582 - 1598
  • [10] The Trace Map and Integrability of the Multifunctions
    Efremova, Lyudmila S.
    [J]. EUROPEAN CONFERENCE - WORKSHOP NONLINEAR MAPS AND APPLICATIONS, 2018, 990