Using a new GPI-anchored-protein identification system to mine the protein databases of Aspergillus fumigatus, Aspergillus nidulans, and Aspergillus oryzae

被引:11
作者
Cao, Wei [1 ]
Maruyama, Jun-ichi [1 ]
Kitamoto, Katsuhiko [1 ]
Sumikoshi, Kazuya [1 ]
Terada, Tohru [2 ]
Nakamura, Shugo [1 ]
Shimizu, Kentaro [1 ]
机构
[1] Univ Tokyo, Grad Sch Agr & Life Sci, Dept Biotechnol, Bunkyo Ku, Tokyo 1138657, Japan
[2] Univ Tokyo, Grad Sch Agr & Life Sci, Agr Bioinformat Res Unit, Bunkyo Ku, Tokyo 1138657, Japan
关键词
Aspergillus fumigatus; Aspergillus nidulans; Aspergillus oryzae; GPI; SVM; SACCHAROMYCES-CEREVISIAE; CANDIDA-ALBICANS; GENOME-WIDE; MEMBRANE-PROTEINS; SIGNAL PEPTIDES; OMEGA-SITE; GLYCOSYLPHOSPHATIDYLINOSITOL; PREDICTION; SEQUENCE; GENE;
D O I
10.2323/jgam.55.381
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Computational approaches provide valuable information to start experimental surveys identifying glycosylphosphatidylinositol (GPI)-anchored proteins in protein sequence databases. We developed a new sequence-based identification system that uses an optimized classifier based on a support vector machine (SVM) algorithm to recognize appropriate COOH-terminal sequences and uses a classifier implementing a simple majority voting strategy to recognize appropriate NH2-terminal sequences. The SVM classifier showed high accuracy (96%) in 5-fold cross-validation testing, and the majority voting classifier showed high recall (98.88%) when applied to it test dataset of eukaryote proteins. When applied to S. cerevisiae protein sequences, the new identification system showed good ability to classify "unseen" data. Applying our system to protein sequences of three aspergilli, we identified 115 GPI-anchored proteins in Aspergillus fumigatus, 129 in Aspergillus nidulans, and 136 in Aspergillus oryzae. Sequence-based conserved domain search found nearly half of these proteins to have conserved domains that covered a wide range of functions.
引用
收藏
页码:381 / 393
页数:13
相关论文
共 59 条
  • [1] Reciprocal regulation of anaerobic and aerobic cell wall mannoprotein gene expression in Saccharomyces cerevisiae
    Abramova, N
    Sertil, O
    Mehta, S
    Lowry, CV
    [J]. JOURNAL OF BACTERIOLOGY, 2001, 183 (09) : 2881 - 2887
  • [2] Ahn N, 2004, MOL CELLS, V17, P166
  • [3] Glycosylphosphatidylinositol-anchored proteases of Candida albicans target proteins necessary for both cellular processes and host-pathogen interactions
    Albrecht, A
    Felk, A
    Pichova, I
    Naglik, JR
    Schaller, M
    de Groot, P
    MacCallum, D
    Odds, FC
    Schäfer, W
    Klis, F
    Monod, M
    Hube, B
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (02) : 688 - 694
  • [4] Improved prediction of signal peptides: SignalP 3.0
    Bendtsen, JD
    Nielsen, H
    von Heijne, G
    Brunak, S
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 2004, 340 (04) : 783 - 795
  • [5] BERGER J, 1988, J BIOL CHEM, V263, P10016
  • [6] QUANTITATIVE ESTIMATION OF CHITIN IN FUNGI
    BLUMENTHAL, HJ
    ROSEMAN, S
    [J]. JOURNAL OF BACTERIOLOGY, 1957, 74 (02) : 222 - 224
  • [7] Bruneau JM, 2001, ELECTROPHORESIS, V22, P2812, DOI 10.1002/1522-2683(200108)22:13<2812::AID-ELPS2812>3.0.CO
  • [8] 2-Q
  • [9] Crh1p and Crh2p are required for the cross-linking of chitin to β(1-6)glucan in the Saccharomyces cerevisiae cell wall
    Cabib, Enrico
    Blanco, Noelia
    Grau, Cecilia
    Rodriguez-Pena, Jose Manuel
    Arroyo, Javier
    [J]. MOLECULAR MICROBIOLOGY, 2007, 63 (03) : 921 - 935
  • [10] AN INTERNALLY POSITIONED SIGNAL CAN DIRECT ATTACHMENT OF A GLYCOPHOSPHOLIPID MEMBRANE ANCHOR
    CARAS, IW
    [J]. JOURNAL OF CELL BIOLOGY, 1991, 113 (01) : 77 - 85