Quantification of model uncertainty on path-space via goal-oriented relative entropy

被引:2
作者
Birrell, Jeremiah [1 ]
Katsoulakis, Markos A. [1 ]
Rey-Bellet, Luc [1 ]
机构
[1] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
基金
美国国家科学基金会;
关键词
Uncertainty quantification; relative entropy; non-reversible diffusion processes; semi-Markov queueing models; stochastic control; SENSITIVITY-ANALYSIS; SIMPLEX-METHOD; INFORMATION; INEQUALITIES; FRAMEWORK; BOUNDS; RISK;
D O I
10.1051/m2an/2020070
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Quantifying the impact of parametric and model-form uncertainty on the predictions of stochastic models is a key challenge in many applications. Previous work has shown that the relative entropy rate is an effective tool for deriving path-space uncertainty quantification (UQ) bounds on ergodic averages. In this work we identify appropriate information-theoretic objects for a wider range of quantities of interest on path-space, such as hitting times and exponentially discounted observables, and develop the corresponding UQ bounds. In addition, our method yields tighter UQ bounds, even in cases where previous relative-entropy-based methods also apply, e.g., for ergodic averages. We illustrate these results with examples from option pricing, non-reversible diffusion processes, stochastic control, semi-Markov queueing models, and expectations and distributions of hitting times.
引用
收藏
页码:131 / 169
页数:39
相关论文
共 53 条
[11]  
Bladt M., 2017, PROBABILITY THEORY S
[12]  
Boyd S., 2004, Berichte uber Verteilte Messysteme
[13]   MEASURING DISTRIBUTION MODEL RISK [J].
Breuer, Thomas ;
Csiszar, Imre .
MATHEMATICAL FINANCE, 2016, 26 (02) :395-411
[14]   Systematic stress tests with entropic plausibility constraints [J].
Breuer, Thomas ;
Csiszar, Imre .
JOURNAL OF BANKING & FINANCE, 2013, 37 (05) :1552-1559
[15]   Statistical analysis of a telephone call center: A queueing-science perspective [J].
Brown, L ;
Gans, N ;
Mandelbaum, A ;
Sakov, A ;
Shen, HP ;
Zeltyn, S ;
Zhao, L .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2005, 100 (469) :36-50
[16]   DISTINGUISHING AND INTEGRATING ALEATORIC AND EPISTEMIC VARIATION IN UNCERTAINTY QUANTIFICATION [J].
Chowdhary, Kamaljit ;
Dupuis, Paul .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2013, 47 (03) :635-662
[17]  
DANKEL T, 1991, SIAM J APPL MATH, V51, P568, DOI 10.1137/0151029
[18]  
Dupuis P., 2011, WILEY SERIES PROBABI
[19]   SENSITIVITY ANALYSIS FOR RARE EVENTS BASED ON RENYI DIVERGENCE [J].
Dupuis, Paul ;
Katsoulakis, Markos A. ;
Pantazis, Yannis ;
Rey-Bellet, Luc .
ANNALS OF APPLIED PROBABILITY, 2020, 30 (04) :1507-1533
[20]   Path-Space Information Bounds for Uncertainty Quantification and Sensitivity Analysis of Stochastic Dynamics [J].
Dupuis, Paul ;
Katsoulakis, Markos A. ;
Pantazis, Yannis ;
Plechac, Petr .
SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2016, 4 (01) :80-111