Quantification of model uncertainty on path-space via goal-oriented relative entropy

被引:2
作者
Birrell, Jeremiah [1 ]
Katsoulakis, Markos A. [1 ]
Rey-Bellet, Luc [1 ]
机构
[1] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
基金
美国国家科学基金会;
关键词
Uncertainty quantification; relative entropy; non-reversible diffusion processes; semi-Markov queueing models; stochastic control; SENSITIVITY-ANALYSIS; SIMPLEX-METHOD; INFORMATION; INEQUALITIES; FRAMEWORK; BOUNDS; RISK;
D O I
10.1051/m2an/2020070
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Quantifying the impact of parametric and model-form uncertainty on the predictions of stochastic models is a key challenge in many applications. Previous work has shown that the relative entropy rate is an effective tool for deriving path-space uncertainty quantification (UQ) bounds on ergodic averages. In this work we identify appropriate information-theoretic objects for a wider range of quantities of interest on path-space, such as hitting times and exponentially discounted observables, and develop the corresponding UQ bounds. In addition, our method yields tighter UQ bounds, even in cases where previous relative-entropy-based methods also apply, e.g., for ergodic averages. We illustrate these results with examples from option pricing, non-reversible diffusion processes, stochastic control, semi-Markov queueing models, and expectations and distributions of hitting times.
引用
收藏
页码:131 / 169
页数:39
相关论文
共 53 条
[1]  
Abundo M., 2015, Sci. Math. Jpn., V77, P357
[2]   AN EFFICIENT FINITE DIFFERENCE METHOD FOR PARAMETER SENSITIVITIES OF CONTINUOUS TIME MARKOV CHAINS [J].
Anderson, David F. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (05) :2237-2258
[3]  
[Anonymous], 2007, OPTIMAL CONTROL LINE
[4]  
[Anonymous], 2016, Concentration Inequalities: A Nonasymptotic Theory of Independence, DOI DOI 10.1093/ACPROF:OSO/9780199535255.001.0001
[5]   Goal-oriented sensitivity analysis for lattice kinetic Monte Carlo simulations [J].
Arampatzis, Georgios ;
Katsoulakis, Markos A. .
JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (12)
[6]  
Asmussen S, 1996, SCAND J STAT, V23, P419
[7]   Robust Bounds on Risk-Sensitive Functionals via Renyi Divergence [J].
Atar, Rami ;
Chowdhary, Kenny ;
Dupuis, Paul .
SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2015, 3 (01) :18-33
[8]  
BAKRY D, 1984, CR ACAD SCI I-MATH, V299, P775
[9]   Optimal controller/observer gains of discounted-cost LQG systems [J].
Bijl, Hildo ;
Schon, Thomas B. .
AUTOMATICA, 2019, 101 :471-474
[10]   Uncertainty Quantification for Markov Processes via Variational Principles and Functional Inequalities [J].
Birrell, Jeremiah ;
Rey-Bellet, Luc .
SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2020, 8 (02) :539-572