A drift-diffusion model for semiconductors with temperature effects

被引:6
|
作者
Xu, Xiangsheng [1 ]
机构
[1] Mississippi State Univ, Dept Math & Stat, Mississippi State, MS 39762 USA
关键词
EQUATIONS; SYSTEM;
D O I
10.1017/S0308210507001187
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish an existence theorem for a stationary semiconductor model which takes into account the current generated by the gradient of the temperature.
引用
收藏
页码:1101 / 1119
页数:19
相关论文
共 50 条
  • [21] Existence and analyticity of solutions to the drift-diffusion equation with critical dissipation
    Yamamoto, Masakazu
    Kato, Keiichi
    Sugiyama, Yuusuke
    HIROSHIMA MATHEMATICAL JOURNAL, 2014, 44 (03) : 275 - 313
  • [22] Asymptotic Behavior of Solutions to the Drift-Diffusion Equation with Critical Dissipation
    Yamamoto, Masakazu
    Sugiyama, Yuusuke
    ANNALES HENRI POINCARE, 2016, 17 (06): : 1331 - 1352
  • [23] Vacuum solution and quasineutral limit of semiconductor drift-diffusion equation
    Ri, Jinmyong
    Huang, Feimin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (04) : 1523 - 1538
  • [25] ON THE EXISTENCE OF SOLUTIONS FOR A DRIFT-DIFFUSION SYSTEM ARISING IN CORROSION MODELING
    Chainais-Hillairet, Claire
    Lacroix-Violet, Ingrid
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (01): : 77 - 92
  • [26] Study of generalized fractional drift-diffusion system in Besov-Morrey Study of generalized fractional drift-diffusion system in Besov-Morrey spaces spaces
    Srhiri, Halima
    Azanzal, Achraf
    Allalou, Chakir
    FILOMAT, 2024, 38 (17) : 6219 - 6235
  • [27] Nonlinear diffusion, boundary layers and nonsmoothness: Analysis of challenges in drift-diffusion semiconductor simulations
    Farrell, Patricio
    Peschka, Dirk
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (12) : 3731 - 3747
  • [28] Uniform L∞ Estimates for Approximate Solutions of the Bipolar Drift-Diffusion System
    Bessemoulin-Chatard, M.
    Chainais-Hillairet, C.
    Juengel, A.
    FINITE VOLUMES FOR COMPLEX APPLICATIONS VIII-METHODS AND THEORETICAL ASPECTS, FVCA 8, 2017, 199 : 381 - 389
  • [29] Homogenization of a nonlinear drift-diffusion system for multiple charged species in a porous medium
    Bhattacharya, Apratim
    Gahn, Markus
    Neuss-Radu, Maria
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2022, 68
  • [30] A numerical-analysis-focused comparison of several finite volume schemes for a unipolar degenerate drift-diffusion model
    Cances, Clement
    Chainais-Hillairet, Claire
    Fuhrmann, Jurgen
    Gaudeul, Benoit
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2021, 41 (01) : 271 - 314