Three superintegrable two-dimensional oscillators:: Superintegrability, nonlinearity, and curvature

被引:9
作者
Carinena, J. F. [1 ]
Ranada, M. F. [1 ]
Santander, M. [1 ]
机构
[1] Univ Zaragoza, Fac Ciencias, Dept Fis Teor, E-50009 Zaragoza, Spain
关键词
D O I
10.1134/S106377880703009X
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The superintegrability of three different two-dimensional oscillators is studied: (i) a nonlinear oscillator dependent on a parameter lambda (two-dimensional version of the oscillator of Lakshmanan and Mathews), (ii) a nonlinear oscillator related to the Riccati equation, and (iii) the standard harmonic oscillator on constant curvature spaces. They can be considered as nonlinear deformations, or curvature-dependent versions, of the linear harmonic oscillator.
引用
收藏
页码:505 / 512
页数:8
相关论文
共 35 条
[31]   On harmonic oscillators on the two-dimensional sphere S2 and the hyperbolic plane H2.: II. [J].
Rañada, MF ;
Santander, M .
JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (05) :2149-2167
[32]   On harmonic oscillators on the two-dimensional sphere S2 and the hyperbolic plane H2 [J].
Rañada, MF ;
Santander, M .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (01) :431-451
[33]   Superintegrable systems on the two-dimensional sphere S2 and the hyperbolic plane H2 [J].
Rañada, MF ;
Santander, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (10) :5026-5057
[34]  
RANADA MF, 2002, CLASSICAL QUANTUM IN, V59, P243
[35]   Exact solvability of superintegrable systems [J].
Tempesta, P ;
Turbiner, AV ;
Winternitz, P .
JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (09) :4248-4257